The Narâp Crîp v9 grammar

+merlan \#flirora

February 18, 2023

Contents

1 What is Narâp Crîp? 9
1.1 Changes from Narâb Crî̀ v7 9
1.1.1 Phonology and orthography 9
1.1.2 Morphology 10
1.1.3 Syntax 10
1.1.4 Lexicon 10
2 The principles of Narâb Crîb 13
2.1 Aesthetics according to +merlan \#flirora 13
2.2 Quasi-naturalism 14
2.2.1 Complexity 15
2.2.2 The concept of flipe 15
2.2.3 Redundancy 16
2.2.4 Ambiguity 16
2.2.5 Plausibility 16
2.2.6 Can there be a super-naturalistic conlang? 16
2.3 What Narâb Crî̀ will never have 16
I Background 19
3 The world 23
3.1 The species 23
3.1.1 Other species 24
3.2 History 24
4 Narâp Crîp in the world 25
4.1 The history of Narâb Crîp. 25
4.2 Narâb Crîp as spoken today 26
4.2.1 \quad Other languages in Narâb Crîp-speaking areas 27
4.3 Languages spoken elsewhere 27
II Orthography and phonology 29
5 Layers 1 and 2w: Cenvos and its romanization 33
5.1 Letter numbering 35
5.2 Collation 36
5.3 Numquotes 37
5．4 Backreferences 37
6 Layer 0：the assemblage structure 39
6．1 Validation 41
6．1．1 Coalescence of［－tš－］ 42
6．1．2 \quad Fortition of［h－】 and［ћ－］ 42
6．1．3 Metathesis of 【t \downarrow before 【c】 or 【g \rrbracket 】 42
6．1．4 Nasal assimilation 42
6．1．5 \quad Denasalization of $[\mathrm{n}-\mathbb{\rrbracket}$ 42
6．1．6 Fortition of onsets after［－1］ 42
6．1．7 Devoicing of $\llbracket \mathrm{v}-\rrbracket$ and $\llbracket \nearrow-\rrbracket \rrbracket$ 42
6．1．8 \quad Assimilation of $\llbracket \mathrm{s} \rrbracket$ after［ $\mathrm{b} \rrbracket$ 42
6．1．9 \quad Replacement of［－1】 by［－1］in certain onsets 43
6．1．10 Degemination before another consonant 43
6．1．11 Partial coda elision of bridges with 【－rp】 and 【－cp】 codas 43
6．1．12 The pseudo－coda 【－ท】】 43
6.2 Concatenation 43
6.3 Stem fusion． 44
6．3．1 Stems ending in［j］ 45
6．3．2 Onset aliasing 46
6．3．3 Valid codas 46
6．3．4 Degemination 46
6．3．5 Vowel epenthesis 46
6．3．6 Nasal merging 47
6．3．7 Obstruent merging 48
6．3．8 Final devoicing 49
6．3．9 Stems ending in consonant－liquid onsets 49
6．3．10 Stems ending in 【š】，【1】］，or 【č】］ 51
6．3．11 Stems ending in 【c】 or 【g】 52
6．3．12 Stems ending in［p】］ 53
6．3．13 Stems ending in［ $\mathrm{h} \rrbracket$ 53
6．3．14 Stems ending in［ћ】 54
6．3．15 Stems ending in［ 9 ］ 54
6．3．16 Stems ending in any other onset with two consonants 54
6．3．17 Coda－based rules 55
6．3．18 Properties of stem fusion 56
7 Layer 2s and 3s：the spoken layers 57
7.1 Layer 2s 57
7.2 Layer 3s 57
7．2．1 Isochrony 60
8 Layers 2w－4w：The typography of Narâb Crîp 61
8．1 Kerning 61
8．2 Ligation and shaping 61
8．2．1 Connotations associated with choices in layer－4w realization 78
8.3 Vertical ligation 78
III Syntax 79
9 Overview 81
9.1 Independent clauses 81
9.1.1 Verbless clauses 82
9.2 Dependent clauses 83
9.3 Head and tail particles 83
9.4 Scope ordering 84
9.5 Questions 85
9.6 Data 86
10 Information structure 87
10.1 The additive clitic $\langle=$ 'moc \rangle 87
10.2 Marking exhaustivity 88
IV Morphology 91
11 Overview 95
11.1 Rolls 96
11.2 Phi consonants 96
11.3 Mutations 97
12 Nouns 99
12.1 Declensions 101
12.2 The first declension 102
12.3 The second declension (penultimate) 103
12.4 The second declension (ultimate) 104
12.5 The third declension 105
12.6 The fourth declension 107
12.7 The fifth declension 108
12.8 The sixth declension 109
12.9 L-avoidance 110
12.10 Pronouns and determiners 110
12.10.1 Personal pronouns 110
12.10.2 Interrogative pronouns and determiners 113
12.10.3 Demonstrative pronouns and determiners 115
12.10.4 Quantification 116
12.11 Coordination 117
12.12 Quotatives 117
12.13 Names 118
12.13.1 Personal names 119
12.13.2 Place names 119
12.13.3 Language names 120
12.13.4 Titles of works 120
13 Verbs 121
13.1 Valency and case frame 121
13.2 Predicate modifiers 122
13.3 Verb categories 122
13.4 Inflection of verbs 123
13.5 Finite forms 123
13.5.1 Vitreous verbs 123
13.5.2 Resinous verbs 124
13.6 Participles (adnominal forms) 126
13.6.1 Genus I 127
13.6.2 Genus II 129
13.6.3 Genus III 132
13.7 Converbs (adverbial forms) 133
13.7.1 Reduced coordination 134
13.7.2 Emergent coordination 134
13.7.3 So-clauses 134
13.8 Nominalized forms 134
13.9 Irregular verbs 136
13.9.1 APN-irregular verbs 136
13.10 Interactions with predicate modifiers 139
13.10.1 Comparatives 139
13.10.2 Voice 140
13.10.3 Auxiliary verbs 143
13.11 Modality 145
13.11.1 Imperative 146
13.11.2 Conditional 147
14 Relationals 149
14.1 Valency and case frame 149
14.2 Attachment and relational bias 149
14.3 Inflection 150
14.3.1 Modifying forms 150
14.3.2 Finite forms 152
14.3.3 Nominalized forms 152
14.4 Interactions with predicate modifiers 153
14.5 A tour of relationals 153
14.5.1 Spatial relationals 153
14.5.2 Temporal relationals 153
14.5.3 Syntactic relationals 153
14.5.4 Mathematical relationals 153
14.5.5 Other relationals 155
V Lexicon 157
15 Numerals 161
15.1 Long numerals 161
15.1.1 Ordinal long numerals 164
15.2 Short numerals 164
15.3 Non-integral numerals 169
15.3.1 Rational numerals 169
15.3.2 Inexact numerals 171
15.3.3 Complex numerals 173
15.4 Interrogative quantities 174
15.5 Number agreement 174
15.6 Clitics for numerals 174
15.7 Numeric prefixes 175
15.8 Numerals in writing 175
15.9 Units of measure 176
15.9.1 Date and time 176
15.9.2 Length 178
15.9.3 Currency 178
16 Derivations 183
16.1 Compounding 183
16.2 Derivation 183
16.2.1 Verb to noun 183
16.2.2 Verb to verb 185
16.2.3 Noun to noun 185
16.2.4 Calculus 185
17 Sensation \& perception 187
17.1 Shape 187
17.1.1 Size 187
17.2 Vision 187
17.2.1 Brightness 187
17.2.2 Color 187
17.3 Sound 188
17.3.1 Pitch 188
17.3.2 Loudness 188
17.3.3 Timbre 188
17.4 Touch 188
17.5 Smell 188
17.6 Taste 188
17.7 Cognition 188
18 Kinship 189
19 Loanwords 191
19.1 Adaptation of foreign words 191
19.1.1 Graphemic adaptation 191
19.1.2 Phonetic adaptation 191
19.1.3 Morphological adaptation 191

VI Appendix 193

A Glossary	195

Version 2023-02-17 b821f80
Date \quad Sat Feb 18 02:59:17-0500 2023
Racket 8.7
Pollen 3.2
System Linux 6.1.8-arch1-1 x86_64
NodeJS v19.4.0
f9i f9i 0.1.0
Table 1: Version information.

Chapter 1

What is Yarâp Crîp?

 called Necarasso Cryssesa, it is now on version 9.

The development of the language can be classified into four phases:

- In the first phase (2013 - 2014; VE ${ }^{1}$ ENCS - VE ${ }^{4}$ ENCS), Necarasso Cryssesa was headinitial and had an SVO word order. The language was meant to have an elvish aesthetic. Successive versions of the grammar added more elaborate morphology.
- The second phase (2014-2016; NCS5 - NCS6) made drastic changes to the phonology and grammar in order to make it more like Japanese. For example, these versions had head-final word order and cases, and they lost articles and gender.
- After a hiatus, the author revisited the language, renaming it to Narâb Crîp, with more radical changes than even NCS5. NCv7 lasted from 2019 to 2021. In particular, the phonology was reworked, adding consonant mutations; agreement was made more plentiful; and gender was re-added (albeit not with a sex distinction).
- Lastly, the current phase consists of NCv9, which is the subject of this website. (Version 8 was skipped because 8 is not a lucky number.)

Learn more about the history of Narâb Crîb| ${ }^{2}$ (main site).

1.1 Changes from Narâb Crị̂ v7

1.1.1 Phonology and orthography

The phonology of NCv9 is mostly a successor of NCv7's phonology.
In the area of phonotactics, I have found that I dislike $\langle\eta\rangle$ as a coda, although I like it in the onset position. Therefore, $\llbracket\urcorner \rrbracket$ is no longer a valid coda, and final $\llbracket \mathrm{m} \rrbracket$ is drastically rarer.

NCv 9 adds $\llbracket \mathrm{f} \rrbracket$ and $\llbracket 1 \rrbracket$, as well as several consonant clusters, as valid codas. Most of the complex codas come from an abandoned NCv 7 fork (also confusingly named " $\mathrm{NCv9}$ "), while $\llbracket f \rrbracket$ and $\llbracket c p \rrbracket$ are genuinely new. Of course, more conversion rules must be added to handle the appearance of complex codas mid-word.

[^0]The "circumflexed vowels", $\langle\hat{1} \hat{e}$ ô ầ, were pronounced with creaky voice in NCv7. Therefore, they were often pronounced with a low pitch as well. I have taken advantage of this pronunciation to make NCv 9 a tonal language. After all, about half of the world's languages are tonal, but the proportion among my conlangs is much lower.

NCv 9 adds four true letters, $\langle\mathrm{w} \mathrm{x}$ y z\rangle, which are not used natively but are reserved for Cenvos orthographies of foreign languages.

Additionally, Project Elaine has revised Narâb Crîp's morphophonology: layer 0 is now viewed structurally as paths through a finite state machine. Bridges are resolved when they are formed from concatenation. In addition, Project Elaine adds the operation of stem fusion.

The properties of kerning and ligation were not documented in NCv 7 but are in NCv 9 .

1.1.2 Morphology

In general, NCv 9 has more complex morphology than NCv 7 . NCv 9 inflection can be automated with f 9 i , as is done to produce inflection tables for dictionary entries.

The ablative, allative, prolative, and semblative cases from NC 7 7 were removed, decreasing the number of cases from 12 to 8 . At the same time, the generic and singulative numbers were added, along with the concept of clarep, which governs which numbers make sense for each noun.

In NCv7, the inflectional paradigm of a noun could be deduced from the ending of its lemma. This is not possible in general in NCv 9 . There is also no way to regularly derive nonlemma stems from the lemma form. The inflection of nouns has been organized into six main paradigms, most of which are further divided into sub-paradigms.

In comparison to NCv 7 , NCv 9 has more complex verb inflections. Vitreous verbs in $\mathrm{NCv9}$ resemble the traditional Narâp Crîb inflections in finite verbs. While verbs in NCv7 were marked for aspect using eclipsis only, NCv 9 adds different set of person-number affixes for distinguishing aspect in order to make imperfective and perfective forms distinct when the initial consonant is not eclipsable. Resinous verbs, on the other hand, exhibit more fusion in the finite forms, as well as having certain forms that vitreous verbs do not.

Unlike NCv7, which has a single paradigm for participle forms, NCv 9 has three genera according to the distinctions made in head gender and number, each of which is divided into one or more species. Nominalized forms were uniformly made from a case particle plus the infinitive in NCv 7 , but some of these forms in $\mathrm{NCv9}$ have been replaced with synthetic forms.

Relationals in NCv9 function like NCv7's postpositions, but they mark for attachment (either adnominal or adverbial) and can be used predicatively.

The long numerals up to six are now declined for both case and gender, while they were marked for case only in NCv7.

1.1.3 Syntax

Most of the changes in syntax are either clarifications or new features. The datum, however, has been formalized in NCv 9 .

1.1.4 Lexicon

As inspired by the Shaleian ${ }^{3}$ language, the $\mathrm{NCv9}$ dictionary makes an effort to provide more precise definitions for words rather than simply providing translations.

[^1]Because of the additional restrictions to word forms in NCv 9 , some words are altered from their NC 77 forms.

Chapter 2

The principles of Narâp Crị̂

This chapter expands on ideas presented in "The reason of Narâb Crîp's existence" ${ }^{\text {T }}$ and "The obvious choice is almost always the wrong choice ${ }^{2}$ 2

Narâb Crîp v9 has the following goals:

1. Aesthetics according to +merlan \#flirora, above all other criteria.
2. Integrability into art such as visual art, literature, and music.
3. Precision: the grammar, along with the dictionary, should leave as little doubt as possible on how to use the language.
4. Practicality: the language must be reasonably feasible to use.

The following, on the other hand, are explicit non-goals for Narâp Crîp v9. They are not necessarily to be avoided - in fact, they may be desirable in some quantity, but they will not be pursued either.

- Simplicity and orthogonality were valued in Necarasso Cryssesa but are not in Narâp Crîp.
- Density in either speech or writing.
- Naturalism: although the language is spoken in a fictional world, it is not important for it to be completely naturalistic.
- Unambiguity: ambiguity is acceptable as long as it does not detract from practicality too much. In some cases, special constructions may be added to resolve any ambiguities.

2.1 Aesthetics according to +merlan \#flirora

The aesthetics of a language has three parts: Phonaesthetics, graphaesthetics, and grammaesthetics.

As phonaesthetics pertains to the sound of a language, graphaesthetics pertains to its writing. Both of these can easily be appreciated, although the latter might often be overlooked.

[^2]Grammaesthetics pertains to the grammar of a language. By convention, it also covers the language's vocabulary. Unlike phonaesthetics and graphaesthetics, which can be evaluated by hearing or seeing the language in question, grammaesthetics requires one to study the language to appreciate. As a result, most people have a weaker sense of grammaesthetics than of the other two aspects.

One's sense of aesthetics is frequently influenced by the prestige of the languages and dialects that one knows, and this applies to me as well. However, I still use mine to guide the development of Narâp Crîp because I do not believe in condemning someone's aesthetic preferences solely for being based on (let alone matching) societal prejudices.

In my case, the aesthetics of Narâp Crîp has been influenced by Japanese, Welsh, and Irish, as well as other languages such as Latin or Finnish. While Spanish, a language I studied in school at the time, was influential in the earliest stages of Necarasso Cryssesa, its mark on the language waned as it evolved. In terms of features themselves, my preferences, not all of which are in Narâb Crîp, are as follows:

- having $[\theta],[4],[x]$, and $[\mathrm{x}]$, as well as back unrounded vowels
- not having [b] or [u]. [u] is preferable to [u].
- no tenuis stops: either aspirated or voiced
- [$\mathrm{\eta}$] at onsets but not at codas
- avoiding repeated sounds
- angular strokes in scripts
- mixed logographic and phonetic writing systems
- fusion or agglutination over isolation
- no sex-based grammatical gender; personal pronouns not distinguished by sex or gender
- no negative concord
- no politeness levels (e.g. T-V distinction, honorific forms)

2.2 Quasi-naturalism

The main reason that I avoid making naturalistic languages is the requirement for diachronic conlanging. While I respect those who create naturalistic languages, this part thereof is not enjoyable for me.

In his commentary on his "mklang" 3 Isoraķatheð writes that "it's possible to make a naturalistic language using mklang, and in any case $\mathrm{a}[\mathrm{n}]$ 'almost-but-not-quite-human' language is something that is largely unexplored in language creation". While Narâb Crîp proper started out as a revision of Necarasso Cryssesa, it has become such a language that resembles a natural language but has several features that no natural language would have. Naturalism in languages can be analyzed into several elements that can be borrowed back into a not-quitehuman language.

[^3]
2．2．1 Complexity

When discussing languages，＇complexity＇can refer to different ideas．The first division is be－ tween COMPLEXITY OF DESCRIPTION and COMPLEXITY OF USE．Complexity of description relates to describing and consequently learning the language．In contrast，complexity of use describes the amount of computation needed to use the language，such as to evaluate the truth condi－ tion of a sentence or to form a sentence with a given truth condition．Both of these ideas can apply to the whole language as well as to individual features within it．

Complexity of description can further be divided into intricacy and volume．Intricacy arises from treating the cells of a paradigm in many different ways，while volume arises from treating many of them in the same way．These two quantities can be seen as the amount of code and the amount of data required to describe the language，although this analogy relies on distinguishing code and data．Indeed，different descriptions of the same linguistic feature might have different intricacy－volume balances．For instance，one description might describe the suffixes for a large set of word forms using a complex set of rules，while another might list all of the suffixes themselves．

Given a certain amount of intricacy，there is a lower bound on volume．The theoretical upper bound is too high to be relevant，but once the volume exceeds the threshold for the intricacy，the language starts seeming artificial or incoherent．

The goal of practicality also puts limits on the various types of complexity－most notably， complexity of use．Intricacy，being correlated with complexity of use，is limited as well．Volume mainly affects the acquisition of the language rather than its use，but excessive volume can also lead to excessive complexity of use．Practicality also imposes a lower bound on all of these，since a language that is too simple will not be able to express all ideas．

Necarasso Cryssesa and another conlang of mine，Ḋraћýl Rase，tended toward the lower end of complexity，or rather，left a large amount of complexity undescribed．Later conlangs， such as Lek－Tsaro and Jbl，went in the opposite direction but introduced too much complexity of use．

Version 7 and early version 9 of Narâb Crîp recognized the limits on complexity of use but introduced too much volume instead．Project Caladrius and Elaine，which were enacted on cbD15（2022－06－14），collectively shifted the complexity of noun declension away from volume toward intricacy．

2．2．2 The concept of flipe

An important concept in Narâb Crîp is that of FLIPE ，which translates to gap or difference． When pertaining to language，this word can be translated roughly as asymmetry．More pre－ cisely，a property of a linguistic feature（such as words of a certain part of speech，or phonemes， or inflectional paradigms）has flipe if it applies to some members of that feature but not to other related members that one would expect it to apply to．

For instance，〈menat〉 to see is semitransitive but the related verb 〈crešit〉 to hear is tran－ sitive．This is an example of flipe on case frame in verbs．As another example，the basic color terms in Narâp Crîp are divided between nouns and verbs，with only two colors being assigned both parts of speech．This is an example of flipe on part of speech in color terms．

An example in English，namely on case in pronouns，would be the use of oblique personal pronouns in coordinate noun phrases in subject position．

Flipe is related to the concepts of irregularity，non－orthogonality $\sqrt[4]{4}$ and redundancy of fea－

[^4]tures.

2.2.3 Redundancy

In Necarasso Cryssesa, redundancy was seen as irrational and avoided. Narâp Crîp, on the other hand, does not have such an irrational fear of redundancy.

One must distinguish two different kinds of redundancy: REDUNDANCY OF MORPHEMES and redundancy of features. Redundancy of morphemes involves multiple morphemes in an utterance coding for the same information, of which agreement is one such type. This sense is what most people mean by redundancy when talking about language.

In comparison, redundancy of features refers to the existence of multiple features whose uses overlap or could overlap. For example, Narâb Crîp has adpositions, serial verb constructions, and auxiliary verbs. These overlap in what they could be used for; in other words, a language with only one of these features is possible. Having all three adds a layer of complexity about which construction to use for a given meaning.

2.2.4 Ambiguity

Natural languages also have ambiguities, which novice conlangers tend to be afraid of. The difficult part of adding ambiguity to conlangs is determining how much and what kinds of ambiguity are manageable. In addition, an ambiguous phrase needs disambiguated equivalents.

2.2.5 Plausibility

Another consideration in adding a feature is how plausible it is. Namely:

- How often would the feature in question come into use?
- Is there an evolutionary reason for speakers of this language to want this feature?
- How would this feature have evolved?
- How much burden (e.g. loss of density or increased complexity) does this feature incur when using this language?

2.2.6 Can there be a super-naturalistic conlang?

Sometimes, I have strived to make Narâb Crîp a 'super-naturalistic' language - one that is more complex than a naturalistic language. Although it is certainly not yet at that point, the question of whether such a language is possible is intriguing. The closest one that comes to my mind is Ithkui $\left.\right|^{5}$, although its unfamiliarity might bias it toward seeming complicated.

2.3 What Narâp Crîp will never have

Narâp Crîb will never have the following features:

1. Productive reduplication: This goes directly against the goal of aesthetics.

[^5]2. An emphatic morpheme: One does not simply emphasize a word using a suffix. Try moving it near the end of the sentence.
3. A (unified) negative morpheme: Narâp Crîb has various negative auxiliary and suppletive verbs. Nominal negation (i.e. other than) is expressed with the noun 〈alip〉.
4. A word for very: Either take it out or expand your vocabulary.
5. A T-V distinction: Don't even ask for it.

Part I

Background

This part is an overview of the place in which Narâb Crị̂ is spoken.
Note that the state of Necarasso Cryssesa v6 and Narâb Crîp v7 in Njôro is not necessarily identical to their state as described on Earth ${ }^{6}$ nor is the evolution of Necarasso Cryssesa in Njôro the same as on Earth.

[^6]
Chapter 3

The world

Tergia is a G-type star measuring 0.973 solar masses.
NJôRo is a habitable planet orbiting Tergia with a semimajor axis of 1.068 AU and an eccentricity of 0.0548 . It has a radius of about 6415 km , a mass of 1.01 earth masses, and an axial tilt of 17.8°. The planet has a day length of roughly 24.32 hours, and a year is 403.21 times as long ($=408.61$ Earth days). The northward equinox occurs at a mean anomaly of 104.2° relative to the periapsis. Its major satellite has a radius of 1503 km and orbits Njôro $670,200 \mathrm{~km}$ away at a period of 62.85 Earth days.

Compared to the Sun and the Earth, Tergia has a lower mass and Njôro orbits farther from it. As a result, Njôro has a lower average temperature than that of Earth, at about $10.1^{\circ} \mathrm{C}$. In addition, the eccentricity of Njôro's orbit significantly contributes to variations in solar insolation; since the perihelion is near the southward solstice, the northern hemisphere experiences less extreme changes in temperature than the southern hemisphere.

The planet has four major continents:

- Crîpja (originally referring to the federation that occupied most of its territory) is on the northwest corner of the map. Nearby are the islands Medac-adir (to the northeast), Vasacel (to the northwest), and and Neepas (to the west), as well as the Elbana Archipelago between itself and (unnamed-a). Farther to the east of Meðac-adir are the islansd (UNNAMED-B3) and (UNNAMED-b4).
- (unnamed-a1) lies almost entirely in the southern hemisphere, southeast of Crîpja.
- (unnamed-a2) is to the north of the eastern part of (unnamed-a) and to the west of Crîpja.
- (unnamed-a3) lies directly to the south of Crîpja. To its east are the (unnamed-b1) and (UNNAMED-B2) islands.

The map is not yet finished but a preview ${ }^{1}$ is available.

3.1 The species

As of (year), Njôro contains about 750 million sapient individuals in total.
The dominant sapient species inhabiting Njôro is the nava. For most purposes, navo can be regarded as humans, but their biology has several differences. Most notably, navo lay eggs

[^7]instead of giving live birth; in addition, the young are fed by mouth instead of receiving milk. As a result, navo lack any nipples or breasts; additionally, their reproductive organs are different from those of humans. Navo also grow horns during the first six years of life but shed them afterwards until they completely disappear by the age of twelve.

3.1.1 Other species

Navo are not the only sapient species on Njôro.
VASOSôR (singular: vasor) are anthropomorphic reptiles. They are bipedal and about 170-190 cm tall, with tails about 50 cm long. They mainly reside in or around Aširel and Farlarp. They number about 1.8 million, and most live nomadic lifestyles.

3.2 History

History, at least within Crîpja, can be divided into the following eras:

- Saegelpe is an apocryphal era that has no definite distance to the other eras but is said to have lasted between 65536 and 16,777,216 years. Between the end of (unnamed-e1) and the start of (unnamed-e2) lies the first inter-era period.
- Evonmiron (c. $-1000-0$) marks the beginning of Crîpol civilization as we know it.
- Minam-eda ($0-677$) starts with the invention of the first version of the Cenvos script, which was used to write Necarasso Cryssesa. (Earlier scripts might have existed.)
- Naresa (677-c. 1400) began with the Naresa Reformation, when Enacssyr Malfa (NCv9: +enacpir \#malfa), the daughter of the previous monarch Enesor (NCv9: \#enesor), forcibly took power from the existing monarchy, making sweeping reforms to the government and society as well as to the language. The resulting regime was eager to silence any opposition, although the heavy-handed rule subsided over the next few centuries.
- Cenped•retes (c. 1400 - 1800) - exploration into nearby areas
- (unNAMED-E5) (c. 1800 - 2100) - industrialization and stuff.
- Asenmeva (c. 2100 - 2561) - futuristic technology; ended with the Venesos Gating Event, which caused a global civilizational collapse.
- Senârmortos (2561-3041) - aftermath of the Venesos Gating Event.
- Nerita (3041-3497) - started with the alliance between Asoren and Viripis, forming what would later be the Federation of Crîpja.
- (UNNAMED-E9) (3497-3612) - dissolution of the federation, with many wars ensuing.
- (UNNAMED-E10) (3612 - ?).

Chapter 4

Narâb Crîp in the world

4.1 The history of Narâp Crîp

Languages play an important part of history, and Narâb Crîp is no exception.
One of the major langauge families in Crîpja is the Sylvic languages, which can be traced back to present-day central Oripel in c. -1600 . The family contains the following languages:

- South Sylvic (c. -700)
- East Sylvic (c. 300)
- Near-East Sylvic (c. 1100)
- Far-East Sylvic (c. 1100)
- West Sylvic (c. 300)
- P-West Sylvic (c. 677)
* Necarasso Cryssesa
- C-West Sylvic (c. 677)

The South Sylvic branch diverged from the rest of the languages around the year -700 . The rest of the family split into the East and West branches around 300.

In present-day Oripel and Arcelis, the West Sylvic languages were spoken. These included Necarasso Cryssesa, which would eventually become a prestige language in the region. Around the year 300, Necarasso Cryssesa, like many other West Sylvic languages, was largely head-initial and had two sex-based genders. Unsurprisingly for that time, the society of its speakers was quite patriarchial in ways that would be distasteful to mention in this grammar.

In 669 , Enacssyr Malfa, who was the daughter of Enesor, the then-reigning king of Cressja, fled an arranged marriage and led a revolt against the ruling class. Her movement eventually seized the capital city in 677, leading to what would be known as the Naresa Reformation. Along with making sweeping reforms to the government and society (often in a heavy-handed manner), she enacted major changes to the language. She not only removed the gender system from Necarasso Cryssesa but also caused a reversal in the head directionality of the language. These changes also spread to most of the West Sylvic languages, which would be known as P -West Sylvic languages, with the holdouts being classified as C-West Sylvic languages.

Necarasso Cryssesa underwent further changes until 1500, but it evolved surprisingly little after that point.

Necarasso Cryssesa was written with the Old Cenvos Script，which was invented in the year 0 by a person now referred to as 〈\＃\｛nensâћa roћalib\}〉Protector of the Stars. This script originally was unicameral，but it later gained lowercase letters．

In Narâb Crîb，Necarasso Cryssesa is called 〈narâb crîp〉，as Narâb Crîp is considered a con－ tinuation of Necarasso Cryssesa despite the vast differences between the two languages．When the two languages must be distinguished，Necarasso Cryssesa is called 〈nema yarâb crîp〉， where \langle nema〉 is borrowed from Necarasso Cryssesa $\langle n e m a\rangle$ old（and not the homophonous word meaning anything）．

The stages of Necarasso Cryssesa are assigned the integers from 1 to 6 ，inclusive，with 0 sometimes being used for its hypothetical predecessors．Strangely，the earliest stage refers to a time before the Sylvic family split；in fact，stage 1 coincides with the term Nevasa．The start of the Naresa era marks the start of 5 ，and the start of the Cenped•retis era marks the start of 6.

Meanwhile，the East Sylvic languages spread to the east．The first East Sylvic speakers migrated across the Anares Mountains around 1100，creating a split between the Near－East Sylvic and the Far－East Sylvic languages．

NarÂp Crîp v7 started to take shape in the late Senârmortos era and became codified with the Asoren－Viripis alliance．The origin of Narâb Crîp is unclear，but it is thought to have originated as a creole between Necarasso Cryssesa and Far－East Sylvic languages，with some influence from non－Sylvic languages and hardcore standardization．

During the Nerita Era，Narâp Crîb spread throughout Crîbja，becoming either the domi－ nant language or a minority but prestige language．

Toward the end of the Nerita era，Narâp Crîp v7 started to evolve into daughter languages （desorin；sg．desoren）in each region．However，Narâp Crîp continued to be used as a learned language，as well as a lingua franca within the area．The（Society of Narâp Crîp）was founded in 3645 to regulate the language，eventually creating NarÂp Crît v9．

A surge of nationalism across the continent in the 3800s sparked an interest in the ver－ nacular languages，elevating their status．As a result，some of these languages gained official or co－official status in their respective countries．

4．2 Narâb Crîb as spoken today

The current Narâb Crîp－speaking core consists of five countries：SAdun（＜＊＠sadon〉），Viripis， Asoren，Renselis，and Irnines，with the periphery including Lalapne，Cfârnebf•lantis， Venoscrîp，and eastern Aviro and Cbaliso．

This grammar focuses mostly on the standard dialect of Narâp Crîb，which is the prestige variety in all countries that recognize Narâb Crîb as an official language．Technically，standard Narâb Crîp has some differences across different areas，but these differences are minor enough that for the most part，it can be treated as a single variety．

In addition to the standard register，there are many national and regional varieties used for colloquial speech，often coexisting with and influenced by other languages in the area．These form a continuum with standard Narâb Crîp．

In Asoren，colloquial Narâb Crîb varieties can be classified into northern，southern，and inland groups．The Viribian dialects can be classified into coastal and inland groups，with northern Asorenese dialects being similar to coastal Viribian，and the inland Asorenese and Viribian dialects being similar as well．

The coastal－inland distinction is also present in Sadun but is less pronounced than in

Asoren or Viripis.
Renselian dialects are also divided into coastal and inland groups, with an additional group for the area south of the Teripos River.

In contrast, the dialects in Irnines are divided into central and peripheral dialects, based on whether they are spoken within the Irnepsarta mountain range or outside it. The peripheral dialects also form a dialect continuum with each other.

4.2.1 Other languages in Narâb Crî̀-speaking areas

Alongside Narâp Crîp exist other languages spoken in these areas. These are classified primarily into desorin (sg. desoren) and tecter (sg. tectol). Desorin, as previously mentioned, refer to languages that are descended from Narâb Crîb v7, while tecter refer to languages that were spoken in the area before Narâp Crîp was introduced, some of which are still spoken today.

In Asoren, the vernacular Narâb Asoren (also spoken in Viribis as Narâb Viridis) became the official language in some areas, but Narâp Crîp remained official in others. As a result, different areas within the same country have different official languages, and the languages spoken in the household have typically followed whatever the official language is.

The capital of each nation (Cbeflje for Asoren and Vargiel for Viribis) are officially bilingual. The government of Asoren has made several other cities bilingual, with some controversy.
[TODO: cover other desorin in terms of sociolinguistics]
In all of the regions, the case system of NCv 7 was simplified or even lost completely, and the dual number was often lost. In some of the desorin, the celestial and terrestrial gender were merged into a 'non-human' gender.

4.3 Languages spoken elsewhere

Narâp Crîp is only one of the four current hypercentral languages in Njôro (that is, there is no single language with as much influence as English has in this world), with the others being:

- (unNAMED-L1) - isolating and head-initial; uses logographic script; base-? numeral system
- (UNNAMED-L2) - both positional and cased nouns; many light verb constructions; base-? numeral system
- (unNAMED-L3) - ?; base-? numeral system

Almost all education systems teach at least one of these languages as a foreign language.

Part II

Orthography and phonology

The phonology and orthography of Narâp Crîb can be divided into eight layers in two modes（writing and speaking）：
－Layer 0 is the underlying morphographemic representation．Content in this layer exists structurally instead of linearly．In this grammar，text in this layer is written in double square brackets：【tanc－a】．
－Layer 1 is the graphemic representation．This representation is subsequently exported to the spoken and written modes．Text in this layer is written with angle brackets：〈tanca〉．
－Layer 2 w is the surface glyphic representation．This represents the sequence of Cenvos glyphs that is written，observing required ligatures and final forms．Text in this layer is written with double angle brackets：${ }^{2}\langle$ tanca \rangle ；for a more interesting example，〈mencoc〉 becomes ${ }^{2}\langle\overline{\text { mencoc }} \\rangle ．
－LAYER $2 \mathrm{w}^{*}$ is an intermediate layer between 2 w and 3 w ，in which discretionary ligatures are introduced to 2 w text．For instance，${ }^{2}\langle \#$ flirora \rangle can be realized as ${ }^{2 *}\langle \#$ flirora \rangle ．
－Layer 3w is the topological representation，showing optional ligatures as well as stroke order variations．Text in this layer is written with double angle brackets：${ }^{3}\left\langle\mathrm{t}_{1 \alpha} \mathrm{a}_{1 \gamma} \mathrm{n}_{1 \alpha} \mathrm{c}_{1 \alpha} \mathrm{a}_{1 \alpha}\right\rangle$ ． More interestingly，${ }^{2}\langle\overline{\text { mencoc }} \overline{\$}\rangle$ could become ${ }^{3}\left\langle\mathrm{me}_{1 \alpha} \mathrm{n}_{1 \alpha} \mathrm{c}_{1 \alpha} \overline{\mathrm{o}_{1 \alpha} \mathrm{c} \$_{1 \alpha}}\right\rangle$ ．
－Layer 4 w is the presentational representation，adding to 3 w variations in the strokes themselves and how strokes within a glyph are joined．Text in this layer is written with double angle brackets：${ }^{4}\left\langle\mathrm{t}_{1 \alpha} \mathrm{a}_{1 \gamma} \mathrm{n}_{1 \alpha} \mathrm{c}_{1 \alpha} \mathrm{a}_{1 \alpha}\right\rangle$ ．
－Layer 2s is the phonemic representation．We use slashes for this，as usual：／tanka／．
－Layer 3s is the phonetic representation，or what is pronounced．We use square brackets for this，as usual：［ $\left.t^{\mathrm{h}} \mathrm{a}^{4} \mathrm{jc} \mathrm{c}^{\mathrm{h}} \mathrm{a}^{2}\right]$ ．

The conversions from 0 to 1,1 to 2 w ，and 2 s to 3 s are functional：each valid input corre－ sponds to exactly one output．The conversion from 1 to 2 s is almost so，except when a $\langle \&\rangle$ is present．In the opposite direction，the conversions from $4 w$ to $3 w$ ，from $3 w$ to $2 w^{*}$ ，and from $2 \mathrm{w}^{*}$ to 2 w are functional．Furthermore，for any conversion，it can be determined whether a given input can be converted into a given output without external information．

In addition，the conversion between 1 and 2 w is bijective：valid layer－ 1 and layer－ 2 w rep－ resentations can be paired with each other．

Chapter 5

Layers 1 and 2w: Cenvos and its romanization

Rather than starting at layer 0 , we start at layers 1 and 2 w .
Cenvos, the native script of Narâp Crîp, is written from right to left. This script can be analyzed on two levels: GRAPHEMES, which constitute the abstract level and glyphs, which are the characters being written. For instance, Cenvos has one grapheme romanized as $\langle\mathrm{c}\rangle$ that corresponds to two different glyphs: the non-final form c (denoted as ${ }^{2}\langle\mathrm{c}\rangle$) and the final form $\Gamma\left({ }^{2}\langle\bar{c} \$\rangle\right)$. As another example, the sequence $\bar{\ddagger}\left(\langle\mathrm{me}\rangle={ }^{2}\langle\overline{\mathrm{me}}\rangle\right)$ consists of one glyph but two graphemes.

In this grammar, we primarily use the romanization, whose symbols largely map one-toone with Cenvos graphemes. Cenvos has four kinds of graphemes:

- True letters are graphemes that represent sounds.
- Markers, while considered letters, do not represent sounds. Instead, they indicate that the words affected are treated specially. They occur on the level of a word and do not actively participate in morphology.
- Punctuation includes the clause-end punctuation $\langle\rangle,.\langle;\rangle,\langle$? \rangle, and $\langle!\rangle$; the clitic boundary mark $\rangle\rangle$; the lenition mark $\rangle ;$; the grouping brackets $\langle\}\rangle$; and the quotation marks〈«»〉.
- Digits can be used to write short numerals.

Of course, there is also the space.
The letters $\langle\mathrm{w}\rangle,\langle\mathrm{x}\rangle,\langle\mathrm{y}\rangle$, and $\langle\mathrm{z}\rangle$ are USR letters. These are used in foreign languages written in Cenvos to represent phonemes that are not approximated by the phonology of Narâb Crîp. Each foreign orthography is free to assign them as it pleases.

Cenvos has two graphemes that change form at the end of the word: $\langle\mathrm{c}\rangle$ and $\langle\mathrm{n}\rangle$, as well as several ligatures. We do not distinguish these forms in the romanization.

The marker $\left\langle^{* *\rangle}\right.$ is used for foreign words, such as loanwords and foreign names. $\langle \#\rangle$ is used to prefix given names (Subsection 12.13.1). $\langle+\rangle$ is used to prefix surnames passed by native conventions (i.e. from parent to child within the same gender); $\left\langle+{ }^{*}\right\rangle$ marks a surname passed using non-native conventions. Place names (Subsection 12.13.2) are prefixed with $\langle @\rangle$. $\langle \#\rangle,\langle+\rangle,\left\langle+^{*}\right\rangle$, and $\langle @\rangle$ can all be used with $\left\langle^{*}\right\rangle$, in which case $\left\langle^{*}\right\rangle$ occurs first. Note that $\left\langle+^{*}\right\rangle$ is a single letter of its own and not a ligature.

Cen	Name	Rom	Cen	Name	Rom	Cen	Name	Rom
True letters								
c	ca	c	\pm	ma	m	v	ar	h
」	e	e	x	a	a	－	ћo	ћ
2	na	n	＂	fa	f	N	ên	ê
「	ya	y	9	ga	g	4	ôn	ô
\wedge	va	v	\uparrow	pa	p	1	ân	â
\checkmark	o	o	\uparrow	ta	t	V	uћo	u
s	sa	s	λ	ča	č	•	cełaya	w
＂	pa	b	L	în	î	¢	avarte	x
「	ša	s	／	ja	j	\wedge	pripnos	y
1	ra	r	1	i	i	2	telrigjon	z
4	la	1		da	d			
λ	ła	1	x	ðа	б			
Final forms and ligatures（layer 2w）								
Γ		$\overline{c \$}$	$\bar{\square}$		$\overline{\mathrm{me}}$	○		$\overline{\mathrm{w}}$
F		$\overline{\mathrm{y}}$	$\hat{\jmath}$		$\overline{\mathrm{mm}}$	\cdots		$\overline{\mathrm{xx}}$
Ј		$\overline{\text { ee }}$	\％		$\overline{\text { jâ }}$	」		$\overline{\mathrm{yy}}$
〕		$\overline{\mathrm{em}}$	d		$\overline{\hat{a} j}$	q		$\overline{\mathrm{ZZ}}$
Markers								
7	carp	\＃		njor	＋＊	＊	nef	＊
－	tor	＋			＠	\cdots	sen	\＆
Punctuation								
Γ	gen	－		yos		3	fos	«
2	tja	；		til	－	4		»
v	šac	？		rin	\｛	9	jedva	1
r	cjar	！	1	cin	\}	＊	mivaf．ome	－

Table 5．1：The graphemes of Narâb Crîp．（The columns are read from left to right．）

Cen	\＃	Cen	\＃	Cen	\＃	Cen	\＃
6	0	$/$	1	γ	2	7	3
ل	4	＋	5	0	6	h	7
0	8	لو	9	b	A	9	B
＜	C	5	D	φ	E	c	F

Table 5．2：The digits of Narâb Crîb．（The columns are read from left to right．）
At the start of a word，$\langle \&\rangle$ indicates reduplication of an unspecified prefix of the rest of the word．For instance，〈\＆cên〉 can be pronounced as if it were 〈cêcên〉 or 〈cêncên〉．（〈\＆〉 occurs after all other markers in this case．）This usage is not productive in standard Narâb Crîb，but it appears in a few words，as well as in some idiosyncratic cases．At the middle or the end of a word，or alone，it indicates ellipsis of part or all of the word，most often to abbreviate or censor a word．Lastly，$\langle \&\}\rangle$ is used similarly to the ellipsis in Western punctuation．

Markers can be applied to multi－word strings by surrounding the string with the delimiters $\langle\}\rangle$ ．In legal language，$\langle\}\rangle$ are also used around phrases to resolve ambiguities．

The sentence punctuation $\langle\rangle,.\langle$ ？\rangle ，and $\langle!\rangle$ are used as expected．$\langle;\rangle$ is used to separate two independent clause phrases within the same sentence．The quotation marks，〈«»＞，are used around quotations，direct or indirect．A \langle.$\rangle at the end of a quotation embedded within another$ sentence is omitted．
\rangle is used to separate clitics from the rest of the word to which they are attached．〈•〉 indicates lenition；it could be described as a＂letter modifier＂．It is also used as a decimal point： officially，it is used after the most significant digit of an inexact numeral when written with digits，but it also used unofficially to write non－integers．
\langle/\rangle ，as its derivation from $\langle\mathrm{i}\rangle$ suggests，is used to separate the number of mjari from the number of edva when writing currency amounts．

The morpheme boundary marker，$\rangle\rangle$ ，is sometimes used metalinguistically to mark a mor－ pheme boundary，but it is not strictly a part of layer 1 ．

Spaces are placed in the following places：
－between orthographic words，but not between a clitic and the word to which it is at－ tached
－after（but not before）$\langle\rangle,.\langle;\rangle,\langle$ ？\rangle ，and $\langle!\rangle$
－before $\langle «\rangle$ and after 〈»〉（but not on the other sides）
－around $\langle \&\rangle\rangle$
［TODO：cover mentions of letters within the language，corresponding to v7 p17＂When letters or markers are referred to，．．．but the effects on other glyphs are not standardized＂］

Digits are interchangeable with short－form numerals，but not with long－form numerals． They are also written right－to－left in Cenvos，with the most significant digit first：$\uparrow \supset ૪$ is $0 \times 2 \mathrm{~A} 3$ $=675$ ．

5．1 Letter numbering

Sometimes，an integer must be assigned to each letter．In this case，the assignment shown in the table below is used．Note that numbers are not assigned fully sequentially．Furthermore，

Letter	Hex	Dec	Letter	Hex	Dec	Letter	Hex	Dec
True letters								
c	0	0	m	20	32	h	11	17
e	1	1	a	9	9	ћ	12	18
n	2	2	f	A	10	ê	101	257
y	2B	43	g	B	11	ô	104	260
v	3	3	p	C	12	â	109	265
o	4	4	t	D	13	u	13	19
s	5	5	č	DE	222	w	－1	－1
p	55	85	î	E	14	x	－2	－2
š	5E	94	j	6E	110	y	－3	－3
r	6	6	i	F	15	z	－4	－4
1	7	7	d	10	16			
ł	77	119	б	155	341			
Markers								
\＃	14	20	＋＊	16	22	＊	19	25
＋	15	21	＠	17	23	\＆	1A	26

Table 5．3：Letter numbering in Narâp Crîb．（The columns are read from left to right．）
this function is valid only for layer 1 graphemes．
The letter sum of a word is the sum of all of its letters．This value is used in some of the noun declension paradigms．

It is theorized that letter numbers were assigned in the following manner：
－The basic true letters inherited from Necarasso Cryssesa（i．e．those corresponding to $\langle\mathrm{cenvosrlmafg} \mathrm{ptîid} h\rangle$ ）received sequential numbers from zero．The number of $\langle\mathrm{m}\rangle$ was changed due to superstitions against the number eight．
－$\langle\mathrm{\eta} \mathrm{p}$ š \ddagger č $ð\rangle$ received numbers based on what letter pairs（or triplets in the case of $\langle\delta\rangle$ ） they were based on．
－〈̂̂̀，〈ồ，and 〈â〉 were numbered as 256 ＋base glyph number．
－The other letters and the markers received sequential numbers after $\langle\mathrm{h}\rangle$ ，skipping 0 x 18 ．

5．2 Collation

The true letters and the markers are collated in their respective order，except for $\langle \&\rangle$ ，which is ignored．Lenited letters are treated as their respective base letters，except when two words differ only by the presence or absence of a lenition mark，in which case the lenited variant is collated after the base letter：\langle saga $\rangle<\langle$ sag $\cdot \mathrm{a}\rangle<\langle$ sada $\rangle<\langle$ saћa \rangle ．Numerals are collated after all letters．

Numquote	Meaning
B $\}$	Contains parenthetical information: provides supplementary information. The sentence should still be grammatical without the parenthetical content.
$1\}$	Lists an alias of a referent mentioned by name.
$2\}$	Surrounds a key-value list. Used as such: $\langle 2\{3\{\&\}\} 4\{\&\}\} 3\{\&\}\} 4\{\&\}\}\}$
3\}	Used for listing a key inside $\langle 2\}\rangle$.
4\}	Used for listing a value inside $\langle 2\}\rangle$. When not directly inside a $\langle 2\}\rangle$ numquote, marks a list: elements are delimited by spaces, and $\}\rangle$ can be used to insert multi-word elements.
$9\}$	Used to contain abbreviated quantities in the traditional currency system.
*9\}	Used to contain abbreviated quantities in a currency system other than the traditional one.

Table 5.4: Numquotes in Narâp Crîp.

In a directory of personal names, entries are collated on surnames, with given names considered only when surnames are identical. Headings in such a list include the prefix up to and including the first true letter: 〈+merlan \#flirora〉 would be found under $\langle+\mathrm{m}\rangle$.

Ordered items can be labeled using numerals (starting from 0) or letters. In the latter case, only the letters $\langle\mathrm{cenvosrlmafg} \mathrm{ptifidh}\rangle$ are used.

5.3 Numquotes

A digit immediately preceding text surrounded by quotation or grouping marks constitutes a nUMQUOTE. The digit is usually not pronounced in this case. Numquotes are mainly used for secondary purposes that lack any dedicated punctuation.

5.4 Backreferences

Sometimes, repeated sections of a text are notated using backreferences. A backreference definition consists of two poses followed by a string of letters (the identifier) and a space, and then a phrase inside a $\}\rangle$ pair. The text inside the delimiters will be transcluded using a backreference itself, which consists of two tils followed by the same identifier.

Chapter 6

Layer 0: the assemblage structure

The phonotactics of Narâb Crîp can be expressed in terms of a state machine with five states: s (syllabic), g (Glide), o (onset), n (nuclear), and ω (TERminal). Each transition defined in the state machine has a set of accepted payloads.

A word, or rather the phonotactically relevant part thereof, starts in the syllabic state and ends in the terminal state.

- The syllabic state, s, is reached between syllables. In this state, an initial can be accepted to transition to the glide state.
- The glide state, g, is reached immediately after an initial. This state can accept a medial to transition to the onset state.
- From the onset state, o, a vowel (also called a nucleus) leads to the nuclear state.
- From the nuclear state, n, a simple coda can be accepted to transition back to the syllabic state. Alternatively, a simple or complex coda may be accepted to transition to the terminal state.
- The terminal state is the end state for a word and marks the end of the final syllable. There are no transitions from this state.

The payloads associated with a transition are strings of manifested grapheme phrases. A manifested grapheme phrase is either a true letter not followed by a lenition marker (plain letter), any of $\llbracket p \mathrm{t} d$ č c g m f v $ð \rrbracket$ followed by a lenition mark (lenited letter), or, word-initially, one of the digraphs $\llbracket \mathrm{mp} \mathrm{vp} \mathrm{dt} \mathrm{nd} \mathrm{gc} \mathrm{gg} \mathrm{vf} \not \mathrm{pl} \ddagger \rrbracket$ (Eclipsed letter). All other graphemes are ignored for the purposes of phonotactics.

A manifested grapheme phrase has a base letter. The base letter of a plain letter is itself. The base letter of a lenited letter is the letter without the lenition mark. The base letter of an eclipsed letter is the second letter of the digraph.

A vowel is any of $\llbracket \mathrm{e}$ o a îi i ê ô â $u \rrbracket$. $\mathfrak{j} \rrbracket$ is a semivowel. All other manifested grapheme phrases are consonants.

An effective plosive is a manifested grapheme phrase whose base letter is any of $\llbracket p \mathrm{td}$ c g 】. An effective fricative is a manifested grapheme phrase whose base letter is any of $\llbracket f$ v pðs šhћ].

A hatted vowel is one of $\llbracket \hat{i} \hat{e} \hat{o} \hat{a} \rrbracket$. All other vowels are unhatted vowels.
An initial is the beginning of a syllable and consists of one of the following:

- nothing at all

Figure 6.1: The finite state machine describing the phonotactics of Narâp Crîp.
－a single consonant
－an effective plosive or fricative plus $\llbracket r \rrbracket$ or $\llbracket 1 \rrbracket$
－any of $\llbracket c f ~ c b ~ c s ~ c s ̌ ~ g v ~ g ð ~ t f ~ d v \rrbracket ; ~ t h a t ~ i s, ~ a ~ p l o s i v e ~ p l u s ~ a ~ f r i c a t i v e ~ o f ~ t h e ~ s a m e ~ v o i c i n g, ~$ such that the plosive has a more retracted place of articulation than the fricative

The set of valid initials is denoted by the capital Greek letter iota，I．
A medial may either be empty or 【j】．The set of medials is denoted by the capital Greek letter mu，M．

The set of vowels is denoted by the capital Greek letter nu， N ．
A coda is either a SImple coda or a COMPLEX CODA．A simple coda is one of $\llbracket \mathrm{srnprpltc}$ f cb \ddagger d or nothing at all．A complex coda is one of $\llbracket \mathrm{st} \mathrm{lt} \mathrm{ns} \mathrm{ls} \mathrm{np} \mathrm{lt} \mathrm{m} \rrbracket$ ，with $\llbracket-\mathrm{m} \rrbracket$ used only in a handful of function words．The set of all simple codas is denoted by the capital Greek letter kappa， K ，and the set of all simple or complex codas is denoted by the capital Greek letter omega，Ω ．

An onset is an initial plus a medial．A bridge is the coda of one syllable plus the onset of the following syllable．

6．1 Validation

Valid morphemes have addditional criteria that they must satisfy：
－All bridges must be valid．

- 【j】cannot precede 【i】，«î】，or «u】．
- 【h】 cannot occur word－initially．
－Conversely，eclipsed letters may only occur word－initially．
A bridge is canonical if it follows the maximal－onset principle；that is，if the onset has the maximal number of consonants for the given sequence of manifested grapheme phrases． For instance，$\llbracket-\mathrm{n}-\mathrm{t}-\rrbracket$ and $\llbracket-\mathrm{r}-\mathrm{pl}-\rrbracket$ are canonical，but $\llbracket-\mathrm{c}-\mathrm{p}-\rrbracket$ and $\llbracket-\mathrm{rb}-\mathrm{l}-\rrbracket$ are not（as they can be regrouped as $\llbracket-\varnothing$－cb－\rrbracket and to $\llbracket-\mathrm{r}-\mathrm{pl}-\rrbracket$ ）．

A bridge is valid if it can arise as the result of repairing a canonical bridge．Bridge repair is intended to change a bridge that is awkward to pronounce into one that is less so．It has the following properties：

1．Except when the coda is $\llbracket-1 \rrbracket$ ，lenition in the onset does not affect whether bridge repair preserves the bridge．

2．The presence of $\llbracket j \rrbracket$ in the onset has no influence on bridge repair．
3．All bridges with a coda that is null，$\llbracket-\mathrm{r} \rrbracket$ ，or $\llbracket-1 \rrbracket$ are unaffected by bridge repair．
4．If a bridge with a complex initial I is not changed by bridge repair，then the bridge with an initial containing only the first consonant of I is also unchanged．

Importantly，bridge repair is not idempotent：$\llbracket-s ð \cdot-\rrbracket$ is repaired to \llbracket－ss－\rrbracket ，but $\llbracket-s s-\rrbracket$ is re－ paired to $\llbracket-\mathrm{p}-\rrbracket$ ．In addition，bridge repair might yield the pseudo－coda $\llbracket-\mathrm{r} \rrbracket$ ，which changes the preceding medial and vowel．

The following sections describe the rules for bridge repair．A bridge that is modified by one rule might be further changed by later rules．

6．1．1 Coalescence of \llbracket－tš－】

The bridge $\llbracket-t \check{~ s ̌-\rrbracket ~ i s ~ c h a n g e d ~ t o ~} \llbracket-c ̌-\rrbracket$ ．

6．1．2 Fortition of $\llbracket h-\rrbracket$ and $\llbracket h-\rrbracket$

The onset $\llbracket h-\rrbracket$ is fortited to $\llbracket c-\rrbracket$ after $\llbracket-s \rrbracket, \llbracket-p \rrbracket, \llbracket-r b \rrbracket, \llbracket-t \rrbracket, \llbracket-c \rrbracket$ ，$\llbracket-f \rrbracket$ ，$\llbracket-\mathrm{f} \rrbracket$ ，or $\llbracket-\mathrm{cb} \rrbracket$ ．$\llbracket \mathrm{hr}-\rrbracket$ and $\llbracket \mathrm{hl}-\rrbracket$ are fortited analogously．

The onset $\llbracket \hbar-\rrbracket$ is fortited to $\llbracket \mathrm{g}-\rrbracket$ after $\llbracket-\mathrm{t} \rrbracket$ ，$\llbracket-\mathrm{c} \rrbracket, \llbracket-\mathrm{f} \rrbracket$ or $\llbracket-\mathrm{-} \rrbracket$ ．$\llbracket \hbar \mathrm{r}-\rrbracket$ and $\llbracket \hbar \mathrm{l}-\rrbracket$ are fortited analogously．

6．1．3 Metathesis of $\llbracket t \rrbracket$ before $\llbracket c \rrbracket$ or $\llbracket g \rrbracket$

$\llbracket-t c-\rrbracket$ and $\llbracket-\mathrm{tg}-\rrbracket$ are metathesized to $\llbracket-\mathrm{ct}-\rrbracket$ and $\llbracket-\mathrm{cd}-\rrbracket$ ，respectively．Likewise，$\llbracket-\mathrm{tcr}-\rrbracket, \llbracket$－tcl－$\rrbracket$ ，【－tgr－\rrbracket ，and $\llbracket-\mathrm{tgl}-\rrbracket$ are metathesized to $\llbracket-\mathrm{ctr}-\rrbracket$ ，$\llbracket-\mathrm{ctl}-\rrbracket, \llbracket-\mathrm{cdr}-\rrbracket$ ，and $\llbracket-\mathrm{cdl}-\rrbracket$ ．

Similar bridges with lenited onsets，such as $\llbracket-\mathrm{tc} \cdot-\rrbracket$ and $\llbracket-\mathrm{tg} \cdot \mathrm{r}-\rrbracket$ are treated analogously， with the resulting onset remaining lenited．
$\llbracket t \rrbracket$ is deleted before $\llbracket c f \rrbracket$ ，$\llbracket c b \rrbracket$ ，$\llbracket c s ̌ \rrbracket$ ，$\llbracket c s ̌ \rrbracket, ~ \llbracket g v \rrbracket$ ，and $\llbracket g ð \rrbracket$ ，devoicing the last two of these．

6．1．4 Nasal assimilation

For these rules，$\llbracket \mathrm{m} \cdot \rrbracket$ is counted as a nasal，even though it is pronounced as a fricative．
【－t】 before a nasal onset assimilates to $\llbracket-\mathrm{n} \rrbracket$ ．
$\llbracket-c \rrbracket$ before a nasal onset assimilates to the pseudo－coda $\llbracket-\eta \rrbracket$（Subsection 6．1．12）．As a special case，$\llbracket-\mathrm{cy}-\rrbracket$ is repaired to $\llbracket-\mathrm{y}-\rrbracket$ instead．

6．1．5 Denasalization of $\llbracket \mathrm{y}-\rrbracket$

After $\llbracket-\mathrm{s} \rrbracket$ ，$\llbracket-\mathrm{p} \rrbracket, \llbracket-\mathrm{rb} \rrbracket, \llbracket-\mathrm{f} \rrbracket$ ，$\llbracket-\mathrm{-} \rrbracket$ ，or $\llbracket c \mathrm{c} \rrbracket, \llbracket \mathrm{n}-\rrbracket$ is denasalized to $\llbracket \mathrm{g}-\rrbracket$ ．

6．1．6 Fortition of onsets after 【－1】

At the beginning of onsets following the coda $\llbracket--\downarrow \rrbracket$ ，the consonants $\llbracket p \rrbracket, \llbracket t \cdot \rrbracket$ ，and $\llbracket s \rrbracket$ are re－ placed by $\llbracket t \rrbracket$ ，and $\llbracket ð \rrbracket$ and $\llbracket \mathrm{d} \cdot \rrbracket$ are replaced by $\llbracket \mathrm{d} \rrbracket$ ．

6．1．7 Devoicing of $\llbracket v-\rrbracket$ and $\llbracket 0-\rrbracket$

After $\llbracket-\mathrm{p} \rrbracket, \llbracket-\mathrm{rb} \rrbracket$ ，$\llbracket-\mathrm{t} \rrbracket, \llbracket-\mathrm{c} \rrbracket, \llbracket-\mathrm{f} \rrbracket, \llbracket-\mathrm{p} \rrbracket$ ，and $\llbracket-\mathrm{cb} \rrbracket, \llbracket \mathrm{v}-\rrbracket$ devoices to $\llbracket \mathrm{f}-\rrbracket$ and $\llbracket \delta-\rrbracket$ devoices to $\llbracket \mathrm{p}-\rrbracket$ ． Additionally，$\llbracket \searrow-\rrbracket$ is devoiced after $\llbracket-\mathrm{s} \rrbracket$ ．

This process occurs analogously for the onsets $\llbracket v r-\rrbracket, \llbracket v l-\rrbracket, \llbracket ð r-\rrbracket$ ，and $\llbracket \searrow 1-\rrbracket$ ，except that $\llbracket-\mathrm{p} \rrbracket$ is deleted before $\llbracket \mathrm{vr}-\rrbracket$ and $\llbracket \mathrm{vl}-\rrbracket$ instead．Additionally，$\llbracket-\mathrm{rpCR}-\rrbracket$ onsets（with $\mathrm{R}=\llbracket \mathrm{r} \rrbracket$ or $\llbracket 1 \rrbracket$ and $C=\llbracket v \rrbracket$ or $\llbracket ð \rrbracket)$ are corrected to $\llbracket-\mathrm{RC}-\rrbracket$ ．

As usual，similar rules apply to lenited onsets：$\llbracket v \cdot \rrbracket$ devoices to $\llbracket f \cdot \rrbracket$ ，and $\llbracket \searrow \cdot \rrbracket$ is replaced with a copy of the preceding consonant，except in $\llbracket-\not-\ngtr \cdot \mathrm{r}-\rrbracket$ and $\llbracket-\mathrm{l} ð \cdot \mathrm{l}-\rrbracket$ ，where it is deleted．

6．1．8 Assimilation of $\llbracket s \rrbracket$ after $\llbracket b \rrbracket$

After a $\llbracket p \rrbracket$ ，$\llbracket \rrbracket$ is replaced with $\llbracket p \rrbracket$ ．Additionally，$\llbracket s s \rrbracket$ is coalesced into $\llbracket \mathrm{b} \rrbracket$ ，unless it is not followed by a consonant and the latter $\llbracket s \rrbracket$ arose from a $\llbracket ð \rrbracket$ in the previous step．

6．1．9 Replacement of $\llbracket-1 \rrbracket$ by $\llbracket-1 \rrbracket$ in certain onsets

Before stop－fricative onsets，as well as before any onset that does not start with $\llbracket \mathrm{t} \rrbracket$ ，$\llbracket \mathrm{d} \rrbracket$ ，$\llbracket 1 \rrbracket$ ， $\llbracket r \rrbracket, \llbracket n \rrbracket$ ，$\llbracket c \rrbracket$ ，or a lenited version of one of these consonants，the coda $\llbracket-1 \rrbracket$ becomes $\llbracket-1 \rrbracket$ ．

6．1．10 Degemination before another consonant

$\llbracket \downarrow \rrbracket$ ，$\llbracket \rrbracket \rrbracket, \llbracket c \rrbracket$ ，and $\llbracket f \rrbracket$ are degeminated before another consonant in the onset；for instance，$\llbracket-$ ffr－\rrbracket is corrected to $\llbracket-\mathrm{fr}-\rrbracket$ ，and $\llbracket-\mathrm{ccs}-\rrbracket$ is corrected to $\llbracket-\mathrm{cs}-\rrbracket$ ．$\llbracket \mathrm{td} \rrbracket$ is degeminated to $\llbracket \mathrm{d} \rrbracket$ ，and【cg】 is degeminated to $\llbracket \mathrm{g} \rrbracket$ ．

This rule also applies when the second instance of the degeminated consonant is lenited， in which case the first copy of the consonant is elided：$\llbracket-\mathrm{tt} \cdot \mathrm{l}-\rrbracket \rightarrow \llbracket-\mathrm{t} \cdot \mathrm{l}-\rrbracket$ ．

6．1．11 Partial coda elision of bridges with 【－rp』 and 【－cp】codas

If the coda is $\llbracket-\mathrm{r} \rrbracket \rrbracket$ ，then it becomes $\llbracket-\mathrm{r} \rrbracket$ before a fricative followed by $\llbracket \mathrm{r} \rrbracket$ or $\llbracket 1 \rrbracket$ ，or before the onsets $\llbracket c f-\rrbracket$ ，$\llbracket c b-\rrbracket, \llbracket c s-\rrbracket$ ，$\llbracket c s ̌-\rrbracket, \llbracket t f-\rrbracket$ ，and $\llbracket d v-\rrbracket$ ．Before any other two－letter onset，it becomes【－b】．

If the coda is $\llbracket-c b \rrbracket$ ，then it is maintained before the onsets $\llbracket \mathrm{b}-\rrbracket, \llbracket \mathrm{s}-\rrbracket, \llbracket \mathrm{m} \cdot-\rrbracket$ ，$\llbracket \mathrm{t}-\rrbracket, \llbracket \hbar-\rrbracket, \llbracket \mathrm{m} \cdot-$ \rrbracket ，or $\llbracket t-\rrbracket$ ．Before $\llbracket c f-\rrbracket$ ，$\llbracket c b-\rrbracket$ ，$\llbracket c s-\rrbracket$ ，$\llbracket c s c-\rrbracket$ ，or $\llbracket t f-\rrbracket$ ，or before any of the onsets consisting of $\llbracket b \rrbracket$ ，$\llbracket \check{\boxed{c}} \rrbracket$ ，or $\llbracket \hbar \rrbracket$ followed by $\llbracket r \rrbracket$ or $\llbracket 1 \rrbracket$ ，the onset loses its first consonant，and $\llbracket c s-\rrbracket$ additionally becomes $\llbracket p-\rrbracket$ ．In all other cases，the coda becomes $\llbracket-\mathrm{b} \rrbracket$ ．

6．1．12 The pseudo－coda $\llbracket-1 \rrbracket \rrbracket$

Nasal assimilation might produce the pseudo－coda $\llbracket-\eta \rrbracket$ instead of an actual（simple）coda．In this case，the preceding vowel becomes $\llbracket o \rrbracket$ for $\llbracket \mathrm{a} o \mathrm{o} \rrbracket \rrbracket$ ，$\llbracket j \rrbracket$ for $\llbracket \mathrm{e} \mathrm{i} \rrbracket$ ，$\llbracket \hat{o} \rrbracket$ for $\llbracket \hat{\mathrm{a}} \hat{o} \rrbracket$ ，and $\llbracket j o ̂ \rrbracket$ for $\llbracket \hat{e} \hat{i} \rrbracket$ ，with any glides merging with the preceding glide．The pseudo－coda itself becomes【－r】．

This operation on a glide－vowel pair is common in Narâb Crîp and is referred to as the ξ－transformation．

6．2 Concatenation

Concatenating two morphemes invokes repair processes to maintain validity invariants．In addition，there are environments that may naturally（if rarely）occur within a morpheme but are repaired away when created by appending morphemes．

Deduplication，which occurs on concatenation，affects fricatives in the onset position that precede a non－hatted vowel followed by a homophonous manifested grapheme phrase：

1．The onset $\llbracket f \rrbracket$ or $\llbracket t f \rrbracket$ followed by a non－hatted vowel then $\llbracket f \rrbracket$ or $\llbracket p \cdot \rrbracket$ is replaced with【t】．

2．The onset $\llbracket \mathrm{p} \rrbracket$ or $\llbracket c b \rrbracket$ followed by a non－hatted vowel then $\llbracket \mathrm{p} \rrbracket$ or $\llbracket t \cdot \rrbracket$ is replaced with $\llbracket \downarrow \rrbracket$ ．In addition，a preceding $\llbracket \downarrow \rrbracket$ or $\llbracket c b \rrbracket$ coda is replaced with $\llbracket s \rrbracket$ ，and a preceding $\llbracket r b \rrbracket$ coda is replaced with $\llbracket r \rrbracket$ ．

3．$\llbracket h \rrbracket$ followed by a non－hatted vowel then $\llbracket h \rrbracket$ or $\llbracket c \cdot \rrbracket$ is replaced with $\llbracket p \rrbracket$ ．
4．$\llbracket v \rrbracket$ followed by a non－hatted vowel then $\llbracket v \rrbracket$ or $\llbracket m \cdot \rrbracket$ is replaced with $\llbracket n \rrbracket$ ．

5．$\llbracket ð \rrbracket$ followed by a non－hatted vowel then $\llbracket ð \rrbracket$ or $\llbracket d \cdot \rrbracket$ is replaced with $\llbracket \mathfrak{q} \rrbracket$ ．
6．【ћ】 followed by a non－hatted vowel then $\llbracket \hbar \rrbracket$ or $\llbracket \mathrm{g} \cdot \rrbracket$ is replaced with $\llbracket \mathrm{g} \rrbracket$ ．
Overall，concatenation invokes the following processes in order：
1．Any new instances of $\llbracket j \rrbracket$ before $\llbracket i \rrbracket$ ，$\llbracket i \rrbracket$ ，or $\llbracket u \rrbracket$ are elided．
2．Deduplication rules are applied．
3．Newly formed bridges are canonicalized and repaired．
Note that deduplication happens before any canonicalization；for instance，appending the syllables $\llbracket \mathrm{rep} \rrbracket$ and $\llbracket \mathrm{eb} \rrbracket$ together gives $\llbracket \mathrm{repep} \rrbracket$ ，not $\llbracket \mathrm{retep} \rrbracket$（although appending the stem $\llbracket \mathrm{rep} \rrbracket$ to the suffix $\llbracket \mathrm{eb} \rrbracket$ does give $\llbracket \mathrm{retep} \rrbracket)$ ．

6．3 Stem fusion

In Narâp Crîp，a stem consists of one or more syllables followed by an onset．In addition，the final onset of a stem must not contain a lenited consonant．

Stem fusion describes a set of related processes on a stem．Stem fusion with a null con－ sonant turns a stem into a word（with a terminal end）．Stem fusion with a non－null consonant combines a stem with one of $\llbracket t \rrbracket$ ，$\llbracket n \rrbracket$ ，or $\llbracket b \rrbracket$ into another stem．

For some stems，stem fusion is C－Invariant；that is，it yields a common sequence of syl－ lables followed by whatever the fusion consonant is．

Notation used to describe stem fusion

－ $\mathcal{S}_{x y}$ is the set of all morphemes with start type x and end type y ，with x and y being one of s（syllabic），g（glide），o（onset），n（nuclear），or ω（terminal）．
－ $\mathcal{S}_{x y}^{n}$ is the subset of $\mathcal{S}_{x y}$ whose elements undergo n cycles from x back to x ．
＊Ex： $\mathcal{\delta}_{x x}^{0}$ contains only the empty string for all boundary types x ．
＊Ex： $\mathcal{S}_{s g}^{0}$ is the set of all initials．
＊Ex： $\mathcal{S}_{n o}^{1}$ includes $\llbracket \mathrm{stafc} \rrbracket$ but not $\llbracket p p j \rrbracket$ or 【tatag】．
－Given $\alpha \in \delta_{x y}$ and $\beta \in \delta_{y z}, \alpha: \beta \in \delta_{x z}$ is the result of appending α and β ， performing repair processes as necessary．
－Ex：if $\alpha=$ feva $\in \mathcal{S}_{s s}$ and $\beta=$ ve $\in \mathcal{S}_{s s}$ ，then $\alpha: \beta=$ fenave $\in \mathcal{S}_{s s}$ ．
－This operation is also defined for $\alpha \in \mathcal{S}_{x o}$ and $\beta \in \mathcal{S}_{g z}$ ，in which case the glides at the end of α and the start of β are merged．
－The exact semantics of this operation depends on the types of α and β ，not only their values．
－$\alpha \beta$ is the result of appending α and β without performing any repair pro－ cesses．
－We also define the following sets：
$-\mathrm{I}=\mathcal{S}_{s g}^{0}$ is the set of all initials．
－ $\mathrm{M}=\delta_{g_{o}}^{0}=\left\{\varepsilon_{\mathrm{M}}, j\right\}$ is the set of all glides．
－ $\mathrm{N}=\delta_{o n}^{0}$ is the set of all vowels．
－ $\mathrm{K}=\delta_{n s}^{0}$ is the set of all simple codas．
－$\Omega=\mathcal{S}_{n \omega}^{0}$ is the set of all codas，simple or complex．
－$\Gamma=\delta_{n g}^{0}$ is the set of all coda－onset pairs．The glide is not included because stems ending in 【j】 are treated specially in stem fusion．
－Π is the set of effective plosives and fricatives－that is，the set of consonants that can form an initial when followed by $\llbracket 1 \rrbracket$ or $\llbracket \mathrm{r} \rrbracket$ ．
－ $\mathrm{T} \subset \delta_{s o} \backslash \delta_{s o}^{0}$ is the set of valid stems．A stem must contain at least one syllable，and its final onset must not contain a lenited consonant．
－A superscript expression containing a slash is interpreted as a substitution of each element on the left side with the corresponding element on the right side．Square brackets denote strings of more than one character．
－For example，$x^{\mathrm{snt} / \partial[n d] \mathrm{c}}$ means＇x ，but with $\llbracket s \rrbracket, \llbracket n \rrbracket$ ，and $\llbracket t \rrbracket$ replaced with $\llbracket \delta \rrbracket$ ，【nd】，and 【c】，respectively＇（with any other value of x unchanged）．
－Given a stem $\tau \in \mathrm{T}, \tau^{\varepsilon} \in \mathcal{S}_{s \omega}$ is the result of fusing τ with a null consonant，and $\tau^{\theta} \in \mathcal{S}_{\text {so }}$ is the result of fusing τ with a non－null consonant $\theta \in\{\mathrm{n}, \mathrm{t}, \mathrm{p}\}$ ．
－We use a shorthand for C－invariant rules：a rule such as $\tau \leadsto \sigma$ ，where $\tau \in \mathrm{T}$ and $\sigma \in \mathcal{S}_{s s}$ ，is interpreted as the rules $\tau^{\varepsilon}=\sigma_{s \omega}$ and $\tau^{\theta}=\sigma: \theta$ ．
－Another shorthand used in this document is $\tau \curvearrowright \tau^{\prime}$ ，which implies $\tau^{\varepsilon}=\left(\tau^{\prime}\right)^{\varepsilon}$ and $\tau^{\theta}=\left(\tau^{\prime}\right)^{\theta}$ ．
－The following variables are used：$\Sigma_{x y} \in \mathcal{S}_{x y}, \gamma \in \Gamma, \iota \in \mathrm{I}, v \in \mathrm{~N}, \kappa \in \mathrm{~K}, \omega \in \Omega$ ， $\theta \in\{\mathrm{n}, \mathrm{t}, \mathrm{p}\}$ ．
－Each set of rules is presented first in mathematical notation then paraphrased （roughly）in plain English．
－Earlier rules take precedence over later ones．

6．3．1 Stems ending in 【j】

$$
\begin{equation*}
\Sigma_{s i j} \leadsto \Sigma_{s i}: \mathrm{i} \tag{FinalJ}
\end{equation*}
$$

Fusion with any stem that ends with $\llbracket j \rrbracket$ is C－invariant，with the $\llbracket j \rrbracket$ replaced with $\llbracket i \rrbracket$ ．

From now on，any explicit instances of ε_{M} will be omitted．

6.3.2 Onset aliasing

$$
\begin{equation*}
\left(\Sigma_{s s} \iota\right)^{\varepsilon}=\left(\Sigma_{s s}: s\right)^{\varepsilon} \quad \text { if } \iota \in\{\mathrm{t}, \mathrm{~d}\}, \kappa \neq ł \tag{Alias}
\end{equation*}
$$

When fusing a stem that has an onset of 【t】or $\llbracket d \rrbracket$ with an empty consonant, pretend that the onset is $\llbracket \mathrm{s} \rrbracket$ instead. This does not apply when the coda is $\llbracket-1 \rrbracket$, as $\llbracket-\mathrm{Hs}-\rrbracket$ resolves to $\llbracket-\mathrm{lt}-\rrbracket$.

6.3.3 Valid codas

$$
\begin{array}{ll}
\left(\Sigma_{s n} \gamma\right)^{\varepsilon}=\Sigma_{s n}: \gamma_{\Omega} & \text { if } \gamma \in \Omega \\
\left(\Sigma_{s n} \gamma\right)^{\theta}=\Sigma_{s n}: \gamma_{K}: \theta & \text { if } \gamma \in \mathrm{K}
\end{array}
$$

(ValidCoda)
If the final bridge of a stem can be interpreted as a valid simple coda (if the fusion consonant is not null) or as a valid coda (if the fusion consonant is null), then reinterpret it as one and append the fusion consonant.

6.3.4 Degemination

$$
\Sigma_{s n} \kappa \iota \leadsto \Sigma_{s n}: \delta(\kappa) \quad \text { if } \kappa=\iota \text { and }|\kappa|=1 \quad \text { (Degeminate) }
$$

where $|\kappa|$ is the number of manifested grapheme phrases in κ and

$$
\delta(\kappa)= \begin{cases}l & \text { if } \kappa=\mathrm{r} \\ \mathrm{p} & \text { if } \kappa=\mathrm{s} \\ \kappa & \text { otherwise }\end{cases}
$$

If the coda and initial of the final bridge are both one manifested grapheme phrase long and equal to each other, then fusion is C -invariant and the repeated letter is removed. As a special case, $\llbracket-\mathrm{rr}-\rrbracket$ becomes $\llbracket-1-\rrbracket$ and $\llbracket-\mathrm{ss}-\rrbracket$ becomes $\llbracket-\mathrm{p}-\rrbracket$.

6.3.5 Vowel epenthesis

$$
\begin{aligned}
\left(\Sigma_{s n} \kappa \mathrm{C}\right)^{\varepsilon} & =\Sigma_{\text {sn }} \varepsilon_{\mathrm{K}} \kappa_{l}: \text { ecp } \\
\Sigma_{\text {sn }} \kappa l & \leadsto \Sigma_{s n} \varepsilon_{\mathrm{K}} \kappa_{l}: \mathrm{e}_{\mathrm{N}}: \iota_{\mathrm{K}}
\end{aligned}
$$

$$
\text { if } \kappa \in\{r, 1, \not,\}
$$

$$
\text { if } \iota \in \mathrm{I} \cap \mathrm{~K}, \kappa \in\{r, \mathrm{I}, \nmid\} \quad \text { (Epenthesis-LC) }
$$

If the coda of the final bridge is $\llbracket r \rrbracket$, $\llbracket 1 \rrbracket$, or $\llbracket \downarrow \rrbracket$ and its initial can be interpreted as a valid coda, then fusion is C-invariant with a $\llbracket-\mathrm{e}-\rrbracket$ inserted between the coda and the initial. As an exception, when fusing with a null consonant with the final initial being $\llbracket \mathrm{c}-\rrbracket$, the final coda of the result is $\llbracket-\mathrm{cb} \rrbracket$ rather than $\llbracket-\mathrm{c} \rrbracket$.

6.3.6 Nasal merging

$$
\begin{array}{rlr}
\sum_{s n} \mathrm{n}_{\mathrm{K}} \mathrm{~d}_{\mathrm{I}} & \curvearrowright \sum_{s s} \mathrm{n}_{\mathrm{I}} & \\
\sum_{s n} \mathrm{n}_{\mathrm{K}}\left(l^{1} l^{2}\right)_{\mathrm{I}} & \curvearrowright \sum_{s n} \mathrm{n}\left(\iota^{2}\right)_{\mathrm{I}} & \text { if } \iota^{1}=\mathrm{d} \\
\sum_{s n} \mathrm{n}_{\mathrm{K}} \iota \curvearrowright \sum_{s n} \eta_{\mathrm{I}} & \text { if } \iota \in\{\mathrm{c}, \mathrm{~g}\} \\
\sum_{s g} \mu \nu \mathrm{n}_{\mathrm{K}}\left(\iota^{1} l^{2}\right)_{\mathrm{I}} & \curvearrowright \Sigma_{s g} \xi(\mu \nu) \mathrm{r}\left(\iota^{2}\right)_{\mathrm{I}} & \text { if } \iota^{1} \in\{\mathrm{c}, \mathrm{~g}\}
\end{array}
$$

(NasalMerge1)
$\xi: \delta_{g n}^{0} \rightarrow \delta_{g n}^{0}$ is the ξ-transformation; i.e.

$$
\xi(\mu v)= \begin{cases}\mu \mathrm{o} & \text { if } v \in\{\mathrm{a}, \mathrm{o}, \mathrm{u}\} \\ \mu \hat{o} & \text { if } v \in\{\mathrm{a}, \hat{\mathrm{o}}\} \\ \text { jo } & \text { if } v \in\{\mathrm{e}, \mathrm{i}\} \\ \text { jô } & \text { if } v \in\{\mathrm{e}, \hat{i}\}\end{cases}
$$

1. If the final bridge has a coda of $\llbracket-n \rrbracket$ and an onset that starts with $\llbracket d \rrbracket$, perform fusion with the first consonant of the onset removed.
2. If the final bridge has is $\llbracket-n c-\rrbracket$ or $\llbracket-n g-\rrbracket$, then perform fusion with $\llbracket-n-\rrbracket$ in its place.
3. If the final bridge has a coda of $\llbracket-n \rrbracket$ and an onset that starts with $\llbracket c \rrbracket$ or $\llbracket g \rrbracket$, perform fusion as if the bridge consisted of $\llbracket r \rrbracket$ followed by the second consonant of the onset, with the previous medial and nucleus affected by the ξ-transformation.

$$
\begin{aligned}
\left(\Sigma_{s n} \varepsilon_{\mathrm{K}} \mathrm{~m}\right)^{\mathrm{n}} & =\Sigma_{s n} \mathrm{~nm} \\
\left(\Sigma_{s s} \mathrm{~m}\right)^{\mathrm{n}} & =\Sigma_{s s}: \text { ôm } \\
\left(\Sigma_{s s} \mathrm{n}\right)^{\mathrm{n}} & =\Sigma_{s s}: \text { enn } \\
\left(\Sigma_{s o} v \kappa \iota\right)^{\mathrm{n}} & =\Sigma_{s o} \chi(v) \kappa: \iota^{\mathrm{d} \gamma v / n n m} \quad \text { if } \iota \in\{\mathrm{d}, ð, \mathrm{v}\} \quad \text { (NasalMerge2) }
\end{aligned}
$$

$\chi: \mathrm{N} \rightarrow \mathrm{N}$ inverts the tone of a vowel; i.e.

$$
\chi(v)=v^{\text {aeioâê̂ô/âê̂ôaeio }}
$$

If the fusion consonant is $\llbracket \mathrm{n} \rrbracket$, then:

1．If the final bridge has an empty coda and an onset of $\llbracket m-\rrbracket$ ，then it metathesizes with the fusion consonant．

2．If the final bridge has an onset of $\llbracket \mathrm{m}-\rrbracket$ but a nonempty coda，then the result has the final initial replaced with $\llbracket-$ ôm－\rrbracket ．

3．If the final bridge has an onset of $\llbracket n-\rrbracket$ ，then the result has the final initial replaced with 【－enn－】．

4．If the final bridge has an onset of $\llbracket d-\rrbracket$ ，$\llbracket \gamma-\rrbracket$ ，or $\llbracket v-\rrbracket$ ，then the result is the stem， but with the final vowel inverted in tone and the final initial replaced with $\llbracket \mathrm{m}-\rrbracket$ where it was $\llbracket \mathrm{v}-\rrbracket$ or $\llbracket \mathrm{n}-\rrbracket$ otherwise．

6．3．7 Obstruent merging

$$
\begin{array}{rlrl}
\Sigma_{s n} \mathrm{r} p \iota & \curvearrowright \Sigma_{s n} \mathrm{r}: \iota & \text { if } \varphi(\mathrm{p}, \iota) & \\
\Sigma_{s n} \mathrm{cp} \iota & \curvearrowright \Sigma_{s n} \mathrm{c}: \iota & \text { if } \varphi(\mathrm{p}, \iota) & \\
\Sigma_{s n} \kappa \iota & \curvearrowright \Sigma_{s n} \varepsilon: \iota & \text { if } \varphi(\kappa, \iota) & \text { (FricMerge1) } \\
\left(\Sigma_{\text {ss }}\left(\iota^{1} \iota^{2}\right)_{\mathrm{I}}\right)^{\theta}=\left(\Sigma_{s s}: \iota^{1}\right)^{\theta} & \text { if } \varphi\left(\iota^{2}, \theta\right) & \\
\left(\Sigma_{s l} \iota\right)^{\theta} & =\Sigma_{s s}: \theta & \text { if } \varphi(\iota, \theta) & \text { (FricMerge2) }
\end{array}
$$

where

$$
\begin{aligned}
& \varphi(\kappa, \iota) \Longleftrightarrow(\kappa, \iota) \in F \vee[\exists \pi \in \Pi, \rho \in\{\mathrm{r}, \mathrm{l}\}: \iota=\pi \rho \wedge(\kappa, \pi) \in F] \\
& F=\{(\mathrm{f}, \mathrm{p}),(\mathrm{p}, \mathrm{p}),(\mathrm{t}, \mathrm{p}),(\mathrm{d}, \mathrm{p}) \\
&(\mathrm{f}, \mathrm{f}),(\mathrm{v}, \mathrm{f}),(\mathrm{p}, \mathrm{f}), \\
&(\mathrm{t}, \mathrm{t}),(\mathrm{t}, \mathrm{n})\}
\end{aligned}
$$

These rules concern environments in which the first consonant of the consonant pairs【fb】，【bp】，【tp】，【dp】，«ff】，【vf】，«pf】，【tt】，and 【tn】 is removed．

1．If in the final bridge of the stem，the onset is either a single consonant or a conso－ nant－liquid onset，and the last consonant of the coda and the first consonant of the onset make up one of the pairs above，fusion occurs as if the last consonant of the coda were absent．

2．If the fusion consonant is not null and the last consonant of the onset and the fusion consonant make up one of the pairs above，then fusion occurs as if the last consonant of the onset were absent．

6.3.8 Final devoicing

$$
\begin{array}{ll}
\left(\Sigma_{s \iota}\right)^{\varepsilon}=\left[\Sigma_{s s} h(\iota)\right]^{\varepsilon} & \text { if } \iota \in\{\mathrm{v}, \mathrm{~m}, \mathrm{~d}, \partial\} \\
\left(\Sigma_{s s} \iota\right)^{\theta}=\left[\Sigma_{s s} h(\iota)\right]^{\theta} & \text { if } \iota \in\{\mathrm{v}, \mathrm{~m}, \mathrm{~d}, \partial\} \text { if } \theta \in\{\mathrm{t}, \mathrm{p}\}
\end{array} \quad \text { (FinalDevoice) }
$$

where

$$
h(\iota)=\iota^{v \mathrm{md} / / f f l p}
$$

If the fusion consonant is not $\llbracket n \rrbracket$ and the stem ends with an onset of $\llbracket v-\rrbracket, \llbracket m-\rrbracket$, $\llbracket d-\rrbracket$, or $\llbracket \partial-\rrbracket$, then fusion occurs as if the final onset is $\llbracket f \rrbracket$, $\llbracket f \rrbracket$, $\llbracket 1 \rrbracket$, or $\llbracket b \rrbracket$ instead.

6.3.9 Stems ending in consonant-liquid onsets

For any consonant c and coda $\omega \in \Omega$, define \triangleleft as

$$
\left(\Sigma_{x n} \omega\right) \triangleleft c=\left(\Sigma_{x n}\lfloor\omega\rfloor\right): c_{I}
$$

where $\lfloor\cdot\rfloor: \Omega \rightarrow \mathrm{K}$ denotes the operation of taking the maximal prefix of a coda that is a simple coda.

To inject a consonant into a sequence of syllables, the last of which might contain a complex coda, remove consonants from the end of the word until it ends with a simple coda, then append the consonant.

These rules concern stems ending in an onset consisting of a consonant π followed by $\llbracket r \rrbracket$ or [1].

Let $\rho \in\{\mathrm{r}, \mathrm{I}\}$ and $\pi \in \Pi$. Then $\pi \rho \in \mathrm{I}$.

$$
\begin{equation*}
\Sigma_{s n} \varepsilon_{\mathrm{K}} l \nu \varepsilon_{\mathrm{K}}(\pi \rho) \leadsto \Sigma_{s n} l_{\mathrm{K}}: \pi_{\mathrm{I}}: v: \rho_{\mathrm{K}} \quad \text { if } \iota \in\{\varepsilon, \mathrm{s}, \mathrm{n}, \mathrm{l}\} \tag{Cl-Meta}
\end{equation*}
$$

If the stem has at least two full syllables, the last two full syllables both have empty codas, and the last full syllable has an onset that is empty, $\llbracket s \rrbracket, \llbracket n \rrbracket$, or $\llbracket 1 \rrbracket$, then fusion is C-invariant, with π moved right after the onset of the last full syllable, which becomes the coda of the preceding syllable.

$$
\begin{align*}
& \left(\Sigma_{s n} \varepsilon_{\mathrm{K}}\left(\mathrm{t}_{\Pi} \rho\right)\right)^{\mathrm{t}}=\Sigma_{s n}: \mathrm{r}_{\mathrm{K}}: \mathrm{t} \\
& \left(\Sigma_{s n} \varepsilon_{\mathrm{K}}(\pi \rho)\right)^{\mathrm{t}}=\left(\sum_{s n} \varepsilon_{\mathrm{K}} \pi_{\mathrm{I}}\right)^{\varepsilon} \triangleleft \mathrm{d} \tag{Cl-NoCoda-T}\\
& \left(\Sigma_{\text {sn }} \varepsilon_{\mathrm{K}}(\pi \rho)\right)^{\mathrm{n}}=\sum_{\text {sn }}\left(\iota^{\mathrm{dc} / \mathrm{rs}}\right)_{\mathrm{K}}: \eta \\
& \left(\Sigma_{s n} \varepsilon_{\mathrm{K}}(\pi \rho)\right)^{\mathrm{n}}=\left(\Sigma_{s n} \varepsilon_{\mathrm{K}} \pi_{\mathrm{I}}\right)^{\mathrm{n}} \\
& \left(\Sigma_{s n} \varepsilon_{\mathrm{K}}(\pi \rho)\right)^{\mathrm{p}}=\Sigma_{s n}: \mathrm{r}_{\mathrm{K}}: \pi \\
& \left(\Sigma_{s n} \varepsilon_{\mathrm{K}}(\pi \rho)\right)^{\mathrm{p}}=\left(\Sigma_{s n} \varepsilon_{\mathrm{K}} \pi_{\mathrm{I}}\right)^{\varepsilon} \triangleleft \delta \\
& \text { if } \pi \in\{d, c\} \\
& \text { (Cl-NoCoda-N) } \\
& \text { if } \pi \in\{p, ð\} \\
& \text { (Cl-NoCoda-P) }
\end{align*}
$$

Otherwise，if the coda of the last full syllable is empty，then：
－If the fusion consonant is $\llbracket t \rrbracket$ and the final onset starts with $\llbracket t \rrbracket$ ，then the result is the stem but with $\llbracket-\mathrm{rt}-\rrbracket$ as the final bridge．
－If the fusion consonant is $\llbracket t \rrbracket$ and the final onset starts with any other consonant， then first perform fusion with a null consonant of the stem without the final liquid．Then inject $\llbracket \mathrm{d} \rrbracket$ into the result of doing so．
－If the fusion consonant is $\llbracket n \rrbracket$ and the final onset starts with $\llbracket d \rrbracket$ or $\llbracket c \rrbracket$ ，then the result is the stem with the final coda being $\llbracket-\mathrm{r} \rrbracket$ or $\llbracket-\mathrm{s} \rrbracket$ ，respectively，and the final onset being $\llbracket \mathfrak{y}-\rrbracket$ ．
－If the fusion consonant is $\llbracket \mathrm{n} \rrbracket$ and the final onset starts with any other consonant， then fusion occurs as if the liquid were absent．
－If the fusion consonant is $\llbracket p \rrbracket$ and the final onset starts with $\llbracket p \rrbracket$ or $\llbracket ð \rrbracket$ ，then the result is the stem but with $\llbracket r \rrbracket$ as the final coda and the liquid in the final onset removed．
－If the fusion consonant is $\llbracket \mathrm{p} \rrbracket$ and the final onset starts with any other consonant， then then first perform fusion with a null consonant of the stem without the final liquid．Then inject $\llbracket ð \rrbracket$ into the result of doing so．

$$
\begin{array}{rlr}
\left(\Sigma_{s s}(\pi r)\right)^{\varepsilon} & =\left(\Sigma_{s s} \pi_{\mathrm{I}}\right): \text { ôr } & \\
\left.\left(\Sigma_{s s}(\pi)\right)\right)^{\varepsilon} & =\left(\Sigma_{s s} \pi_{\mathrm{I}}\right): \text { êl } & \\
\left(\Sigma_{s s}(\pi \rho)\right)^{\theta} & =\left(\Sigma_{s s} \pi_{\mathrm{I}}\right): \hat{\mathrm{e}}_{g s}: \theta & \text { if } \theta \in\{\mathrm{t}, \mathrm{p}\} \\
\left(\Sigma_{s s}(\pi \rho)\right)^{\mathrm{n}} & =\left(\Sigma_{s s} \pi_{\mathrm{I}}\right): \hat{\mathrm{o}}_{g s}: \mathrm{n} & \tag{Cl-N}
\end{array}
$$

Otherwise：
－If the fusion consonant is null，then the result replaces the final $\llbracket r \rrbracket$ or $\llbracket 1 \rrbracket$ with【ôr】 or 【êl】，respectively．
－If the fusion consonant is $\llbracket \mathrm{t} \rrbracket$ or $\llbracket \downarrow \rrbracket$ ，then the result is the stem without the final liquid，followed by 【ê】 then the fusion consonant．
－If the fusion consonant is $\llbracket n \rrbracket$ ，then the result is the stem without the final liquid，
followed by 【ôn】．

Stems ending in $\llbracket \mathbf{r} \rrbracket$ or $\llbracket 1 \rrbracket$

$$
\begin{array}{rlr}
\left(\Sigma_{s s} \mathrm{r}\right)^{\varepsilon} & =\left(\Sigma_{s s} \varepsilon_{\mathrm{I}}\right): \text { ôr } & \\
\left(\Sigma_{s s}\right)^{\varepsilon} & =\left(\Sigma_{s s} \varepsilon_{\mathrm{I}}\right): \text { ell } & \\
\left(\Sigma_{s s} \rho_{\mathrm{I}}\right)^{\theta} & =\left(\Sigma_{s s} \rho_{\mathrm{I}}\right): \hat{\mathrm{e}}_{g s}: \theta & \text { if } \theta \in\{\mathrm{t}, \mathrm{p}\} \\
\left(\Sigma_{s \mathrm{n}} \mathrm{n}_{\mathrm{K}} \rho_{\mathrm{I}}\right)^{n} & =\left(\Sigma_{s n} \mathrm{n}_{\mathrm{K}}\right): \mathrm{n} & \\
\left(\Sigma_{s s} \rho_{\mathrm{I}}\right)^{\mathrm{n}} & =\left(\Sigma_{s s} \rho_{\mathrm{I}}\right): \hat{\mathrm{o}}_{g s}: \mathrm{n} & \tag{L-N}
\end{array}
$$

Likewise，there are similar rules when the final onset is $\llbracket \mathrm{r} \rrbracket$ or $\llbracket 1 \rrbracket$ alone：
－If the fusion consonant is null，then the result replaces the final $\llbracket r \rrbracket$ or $\llbracket 1 \rrbracket$ with【ôr】 or 【êl】，respectively．
－If the fusion consonant is $\llbracket \mathrm{t} \rrbracket$ or $\llbracket \mathrm{b} \rrbracket$ ，then the result is the stem without the final liquid，followed by 【ê】 then the fusion consonant．
－If the fusion consonant is $\llbracket n \rrbracket$ ，then the result is the stem without the final liquid， followed by 【ôn】．
－However，if the preceding coda is $\llbracket-\mathrm{n} \rrbracket$ ，then the result lacks the $\llbracket \hat{0} \rrbracket$ ．

6．3．10 Stems ending in $\llbracket \check{s} \rrbracket$ ，$\llbracket 1 \rrbracket$ ，or $\llbracket \check{c} \rrbracket$

$$
\begin{equation*}
\Sigma_{s n} \kappa l \leadsto \Sigma_{s n} I(\kappa l) \mathrm{i}_{\mathrm{g} s} \quad \text { if } \iota \in\{\check{s}, \nmid, \check{\mathrm{c}}, \mathrm{cs}\} \tag{Šłč}
\end{equation*}
$$

where $I: \Gamma \rightarrow \Gamma$ is defined as

$$
I(\gamma)= \begin{cases}\mathrm{rp} & \text { if } \gamma=\mathrm{rbš} \\ \mathrm{rt} & \text { if } \gamma=\mathrm{rpč} \\ \mathrm{pč} & \text { if } \gamma=\mathrm{cpš} \\ \neq & \text { if } \gamma=\mathrm{l} \\ \check{c} & \text { if } \gamma=\mathrm{tč} \\ \gamma & \text { otherwise }\end{cases}
$$

If the stem ends in $\llbracket \check{s} \rrbracket$ ，$\llbracket 1 \rrbracket$ ，or $\llbracket \check{c} \rrbracket$ ，then fusion is C －invariant with $\llbracket i \rrbracket$ inserted after the stem．However，some bridges are transformed when this occurs：$\llbracket r \mathrm{rss} \rrbracket$ to $\llbracket \mathrm{rp} \rrbracket$ ，$\llbracket \mathrm{rpč} \rrbracket$ to $\llbracket r t \rrbracket, \llbracket c p s ̌ \rrbracket$ to $\llbracket p c ̌ \rrbracket, \llbracket 11 \rrbracket$ to $\llbracket 1 \rrbracket$ ，and $\llbracket t c \check{~} \rrbracket$ to $\llbracket c ̌ \rrbracket$ ．

6．3．11 Stems ending in $\llbracket c \rrbracket$ or $\llbracket g \rrbracket$

$$
\begin{align*}
\left(\Sigma_{s n} \kappa c\right)^{\varepsilon} & =\Sigma_{s n}: \kappa^{\mathrm{sp} /[c p][c p]} \\
\left(\sum_{s s} \mathrm{c}\right)^{\theta} & =\Sigma_{s s}: \theta^{\mathrm{tnp} / \operatorname{tn}[\mathrm{cp}]} \tag{Cp}
\end{align*}
$$

If the final onset is $\llbracket c \rrbracket$ and the fusion consonant is null，then the result is the stem without the final onset and with the final coda replaced with $\llbracket c p \rrbracket$ if it was either $\llbracket s \rrbracket$ or $\llbracket p \rrbracket$（otherwise，the final coda is not changed）．
If the final onset is $\llbracket c \rrbracket$ and the fusion consonant is not null，then the result is the stem without the final onset，followed by $\llbracket t \rrbracket, \llbracket \downarrow \rrbracket$ ，or $\llbracket c b \rrbracket$ for the fusion consonants $\llbracket t \rrbracket, \llbracket n \rrbracket$ ， and $\llbracket p \rrbracket$ ，respectively．

$$
\begin{align*}
\left(\sum_{s o} v \varepsilon_{\mathrm{K}} \mathrm{~g}\right)^{\varepsilon} & =\sum_{s o} v \varepsilon_{\Gamma} \mathrm{i} \varepsilon_{\Omega} \\
\left(\sum_{s o} v \varepsilon_{\mathrm{K}} \mathrm{~g}\right)^{\varepsilon} & =\sum_{s o} v \mathrm{~s} \tag{G-Nil}\\
\left(\sum_{s s} \mathrm{~g}\right)^{\varepsilon} & =\sum_{s s}: \mathrm{i}_{s \omega} \tag{G}
\end{align*} \quad \text { if } v \in\{\mathrm{a}, \mathrm{e}, \hat{\mathrm{a}}, \hat{\mathrm{e}}\}
$$

If the final onset is $\llbracket \mathrm{g} \rrbracket$ ，the fusion consonant is null，then：
－If the preceding coda is empty and the preceding vowel is 【a】，«e】，【â】，or $\llbracket e \rrbracket$ ， then the result is the stem but with the final onset replaced by 【i】．
－If the preceding coda is empty and the preceding vowel has any other value，the result is the stem but with the final onset replaced by $\llbracket s \rrbracket$ ．
－If the preceding coda is not empty，then the result is the stem but with 【i】 added at the end．

$$
\begin{array}{rlr}
\left(\sum_{s n} \kappa \mathrm{~g}\right)^{\theta} & =\sum_{s n} \kappa: \mathrm{i}_{s s}: \theta & \text { if } \kappa \in W \\
\left(\sum_{s s} \mathrm{~g}\right)^{\theta} & =\Sigma_{s s}: \theta^{\operatorname{tnp} / \mathrm{dn}[\mathrm{~g} \delta]} & \tag{Gð}
\end{array}
$$

where W is the set of codas that end in a voiceless consonant．
If the final onset is $\llbracket \mathrm{g} \rrbracket$ but the fusion consonant is not null，then：
－If the preceding coda ends with a voiceless consonant，then the result is the stem plus $\llbracket i \rrbracket$ and the fusion consonant．
－Otherwise，the result is the stem with the onset replaced with $\llbracket d \rrbracket$ ，$\llbracket \vdash \rrbracket$ ，or $\llbracket g ð \rrbracket$ for a fusion consonant of $\llbracket t \rrbracket$ ，$\llbracket n \rrbracket$ ，or $\llbracket b \rrbracket$ ，respectively．

6．3．12 Stems ending in $\llbracket p \rrbracket$

$$
\begin{align*}
\Sigma_{s o} v \varepsilon_{\mathrm{K}} \mathrm{p} & \leadsto \Sigma_{s o} v f
\end{align*} \quad \text { if } v \in\{\mathrm{e}, \hat{\mathrm{e}}\}
$$

If the final onset is $\llbracket p \rrbracket$ ，then fusion is C －invariant．
－If the preceding coda is empty，then the final onset is replaced with $\llbracket f \rrbracket$ if the preceding vowel is $\llbracket \mathrm{e} \rrbracket$ or $\llbracket \hat{\mathrm{e}} \rrbracket$ and with $\llbracket \mathrm{e} \rrbracket$ otherwise．
－If the preceding coda is $\llbracket-n \rrbracket$ ，then the final bridge is replaced by $\llbracket m e \rrbracket$ ．
－If the preceding coda is anything else，then the final onset is replaced with $\llbracket \mathrm{e} \rrbracket$ ．

6．3．13 Stems ending in $\llbracket h \rrbracket$

$$
\begin{align*}
\left(\Sigma_{s s} \mathrm{n}_{\mathrm{K}} \mathrm{~h}_{\mathrm{I}}\right) & =\Sigma_{s n} \mathrm{~ns} \\
\left(\Sigma_{s s} \mathrm{r}_{\mathrm{K}} \mathrm{~h}_{\mathrm{I}}\right)^{\varepsilon} & =\Sigma_{s n} \mathrm{Is} \\
\left(\Sigma_{s g} \mu v \kappa \mathrm{~h}_{\mathrm{I}}\right)^{\varepsilon} & =\Sigma_{s o} \xi(\mu v)\left(\kappa^{\varepsilon / s}\right)_{\Omega} \\
\left(\Sigma_{s s} \mathrm{~h}\right)^{\theta} & =\Sigma_{s s}: \mathrm{t} \tag{H}
\end{align*}
$$

If the final onset is $\llbracket h \rrbracket$ ，then：
－If the fusion consonant is null，then the result is：
－the stem with the final bridge replaced with $\llbracket-n s \rrbracket$ ，if the preceding coda is【－n】
－the stem with the final bridge replaced with $\llbracket-1 \mathrm{ls} \rrbracket$ ，if the preceding coda is【－r】
－the stem with the preceding glide and vowel ξ－transformed，if the preceding coda is anything else．In this case，a final coda of $\llbracket-\mathrm{s} \rrbracket$ is added if it is empty．
－If the fusion consonant is not null，then the result replaces the final onset with【t】．

6.3.14 Stems ending in «h】

$$
\begin{align*}
\Sigma_{s n} c_{\mathrm{K}} \hbar_{\mathrm{I}} & \curvearrowright \Sigma_{\text {sn }} \varepsilon_{\mathrm{K}} \mathrm{~g}_{\mathrm{I}} \\
\left(\Sigma_{s n} \varepsilon_{\mathrm{K}} \hbar_{\mathrm{I}}\right)^{\varepsilon} & =\Sigma_{s n} \mathrm{~s} \\
\Sigma_{\text {ss }} \hbar_{\mathrm{I}} & \leadsto \Sigma_{\mathrm{ss}} \tag{H}
\end{align*}
$$

If the final onset is $\llbracket \hbar-\rrbracket$, then:

1. If the bridge is $\llbracket-c \hbar-\rrbracket$, then fusion occurs as if it were $\llbracket-\mathrm{g}-\rrbracket$ instead.
2. If the fusion consonant is null and the preceding coda is empty, then the result is the stem, but with the final onset replaced with $\llbracket \mathrm{s} \rrbracket$.
3. Otherwise, fusion is C-invariant, with the final $\llbracket \hbar-\rrbracket$ being lost.

6.3.15 Stems ending in $\llbracket \mathfrak{y} \rrbracket$

$$
\begin{align*}
& \Sigma_{s g} \mu \nu \kappa \eta \leadsto \Sigma_{\text {sg }} \xi(\mu \nu) \mathrm{r} \quad \text { if } \kappa \in\{\varepsilon, \mathrm{n}\} \\
& \left(\Sigma_{s n} \kappa \mathrm{y}\right)^{\varepsilon}=\Sigma_{s n} \mid \hat{o_{n \omega}} \quad \text { if } \kappa \in\{r, I\} \\
& \left(\Sigma_{\text {sn }} \kappa \mathrm{y}\right)^{\theta}=\Sigma_{\text {sn }} \mathrm{l}_{\mathrm{K}}: \theta \quad \text { if } \kappa \in\{\mathrm{r}, \mathrm{l}\}
\end{align*}
$$

If the final onset is $\llbracket \eta-\rrbracket$, then:

1. If the preceding coda is empty or $\llbracket-\mathrm{n} \rrbracket$, then fusion is C -invariant, with the final bridge replaced with $\llbracket-\mathrm{r} \rrbracket$ and the preceding glide and vowel ξ-transformed.
2. If the fusion consonant is null and the preceding coda is $\llbracket-\mathrm{r} \rrbracket$ or $\llbracket-1 \rrbracket$, then the result has the final bridge replaced with $\llbracket-1$ ôr \rrbracket.
3. If the fusion consonant is not null and the preceding coda is $\llbracket-\mathrm{r} \rrbracket$ or $\llbracket-1 \rrbracket$, then the result has the final bridge replaced with $\llbracket-1-\rrbracket$ plus the fusion consonant.
4. No other coda preceding the final onset is possible at this point.

6.3.16 Stems ending in any other onset with two consonants

$$
\begin{gather*}
{\left[\Sigma_{s n} \varepsilon_{\mathrm{K}}\left(l^{1} l^{2}\right)_{\mathrm{I}}\right]^{\theta}=\Sigma_{s n} \varepsilon_{\mathrm{K}}\left(l^{1} l^{2}\right)_{\mathrm{I}}^{\hat{1}}: \theta} \\
\Sigma_{s s}\left(l^{1} l^{2}\right)_{\mathrm{I}} \curvearrowright \Sigma_{s s}\left(l^{1}\right)_{\mathrm{I}} \mathrm{I}_{\mathrm{K}} l^{2} \tag{Ccc}
\end{gather*}
$$

If the final onset has two consonants：
1．If the fusion consonant is not null and the preceding coda is empty，then the result is the stem，followed by 【î】 then the fusion consonant．

2．Otherwise，fusion occurs as if 【i】 were inserted between the consonants of the final onset．

6．3．17 Coda－based rules

By this point，the only possible onsets at the end of the stem are $\llbracket \mathrm{n} \mathrm{spf}$ ］．

－All two－consonant onsets have already been handled．

- 【c \mathfrak{y} šrlłg pčh \ddagger 』handled by their respective rules．
- 【v m d $ð \rrbracket$ handled by final devoicing．
- 【t handled by onset aliasing for fusion with ε and by obstruent merging for fusion with θ ．

By observation，the only possible codas in the final bridge at this point are $\llbracket \mathrm{s} \mathrm{n} \mathrm{prpt}$ f ］．
－The empty coda is obviously eliminated，as all of $\llbracket n \mathrm{~s} \mathrm{p} \mathrm{f} \rrbracket$ are valid simple codas．
－$\llbracket r \rrbracket$ ：$\llbracket \mathrm{r} \rrbracket \rrbracket$ is a valid coda；other cases handled by（Epenthesis－LC）
－【l】 handled by（Epenthesis－LC）；in case of fusion with ε ，$\llbracket 1 \mathrm{l} \rrbracket$ and $\llbracket 1 \mathrm{l} \rrbracket$ are valid complex codas
－$\llbracket c \rrbracket: \llbracket-c n-\rrbracket$ is an invalid bridge in the first place；$\llbracket-c s-\rrbracket$ ，$\llbracket-c p-\rrbracket$ ，and $\llbracket-c f-\rrbracket$ are interpreted as having an empty coda and a complex onset．
－$\llbracket c p \rrbracket: \llbracket-c p n-\rrbracket, \llbracket-c p s-\rrbracket$ ，and $\llbracket-c b f-\rrbracket$ not valid．$\llbracket-c b b-\rrbracket$ handled by obstruent merg－ ing．

Some codas are limited to certain onsets at this point：
－【t】can be followed only by $\llbracket \mathrm{s} \rrbracket$ ：$\llbracket-\mathrm{tn}-\rrbracket$ not valid，$\llbracket-\mathrm{tf}-\rrbracket$ canonicalizes to a null coda，and $\llbracket-$－tp－\rrbracket handled by obstruent merging．
－$\llbracket p \mathrm{rb} \rrbracket$ followed only by $\llbracket n \rrbracket$ ：neither can precede $\llbracket \mathrm{s} \rrbracket$ ．$\llbracket p b \mathrm{rbp} \rrbracket$ handled by degem－ ination or obstruent merging．$\llbracket \mathrm{pf} \mathrm{rpf} \rrbracket$ handled by obstruent merging．
－If fusing with a null consonant，$\llbracket n \rrbracket$ is followed only by $\llbracket \mathrm{f} \rrbracket: \llbracket-\mathrm{ns} \rrbracket$ and $\llbracket-\mathrm{n} \rrbracket \rrbracket$ are already valid complex codas，$\llbracket-\mathrm{nn} \rrbracket$ handled by degemination．

The bridge $\llbracket-\mathrm{ts}-\rrbracket$

$$
\begin{equation*}
\Sigma_{s n} \mathrm{ts}_{\Gamma} \leadsto \sum_{s n} \mathrm{~s} \tag{Ts}
\end{equation*}
$$

If the final bridge is \llbracket-ts- \rrbracket, then fusion is C-invariant, with the final bridge replaced by【s】.

The codas $\llbracket-\mathrm{s} \rrbracket, \llbracket-\mathrm{p} \rrbracket, \llbracket-\mathrm{r} \mathbf{p} \rrbracket$, and $\llbracket-\mathrm{f} \rrbracket$

$$
\begin{array}{lll}
\Sigma_{s o} v \mathrm{rp} \iota \curvearrowright \Sigma_{s 0} \eta(v) \mathrm{r}: \iota & & \text { (Coda-Rb) } \\
\Sigma_{s o} v \kappa l \curvearrowright \Sigma_{s o} \eta(v) \varepsilon: \iota & \text { if } \kappa \in\{\mathrm{s}, \mathrm{p}, \mathrm{f}\} & \text { (Coda-Spf) }
\end{array}
$$

where $\eta(v)=v^{\text {aeio } / \text { â̂ê̂o }}$.
If the final coda is $\llbracket-\mathrm{s} \rrbracket$, $\llbracket-\mathrm{p} \rrbracket$, $\llbracket-\mathrm{r} \mathrm{p} \rrbracket$, or $\llbracket-\mathrm{f} \rrbracket$, then fusion occurs as if the preceding vowel is hatted and the final coda loses its last consonant. The following onset is unchanged.

The coda $\llbracket-n \rrbracket$

$$
\begin{align*}
& \Sigma_{s n} \mathrm{nf}_{\Gamma} \leadsto \Sigma_{s n} \mathrm{f} \\
& \Sigma_{s n} \mathrm{n}_{\mathrm{K}} \iota \leadsto \Sigma_{s n} \mathrm{n} \tag{Coda-N}
\end{align*}
$$

If the final coda is $\llbracket-\mathrm{n} \rrbracket$, then fusion is C -invariant, with the bridge replaced with $\llbracket-\mathrm{f} \rrbracket$ if the following onset is $\llbracket f-\rrbracket$ and with $\llbracket-n \rrbracket$ otherwise.

6.3.18 Properties of stem fusion

Fusion with $\llbracket t \rrbracket$ is invariant (i.e. yields the same stem as the original) only when the final onset of the stem is $\llbracket t-\rrbracket$.

Fusion with $\llbracket \mathrm{n} \rrbracket$ is invariant only when the final bridge of the stem is $\llbracket-\mathrm{nn}-\rrbracket$.
Fusion with $\llbracket p \rrbracket$ is invariant only when the final onset of the stem is $\llbracket p-\rrbracket$ or $\llbracket c b-\rrbracket$.

Chapter 7

Layer 2s and 3s: the spoken layers

7.1 Layer 2s

TODO: deal with complex codas before a clitic boundary
Traditionally, only manifested grapheme phrases are considered to be significant in the conversion from layer 1 to layer 2 s . However, other graphemes such as punctuation can affect prosody.

Layer 2 has a two-way tone contrast between vowels: the high tone (H) is the default, being contrasted with the low tone (L). For historical reasons, the presence or absence of a low tone on a vowel is called [\pm creaky].

7.2 Layer 3s

The conversion from layer 2 s to layer 3 s is comparatively more complex.
First, the following changes are made:

- $\mathrm{k} \theta \rightarrow \widehat{\mathrm{x} \theta}$
- $£ \rightarrow$ ћ / V[+creaky] _
- $\mathrm{n} \rightarrow \mathrm{m} /$ _ C[+labial]
- $\mathrm{n} \rightarrow \mathrm{m} /$ _ $\mathrm{C}[+$ labiodental $]$
- $\mathrm{n} \rightarrow \mathrm{n} /$ _ $\mathrm{C}[+$ dental $]$
- $\mathrm{n} \rightarrow \mathrm{\eta}$ / _ C[+retroflex]
- $\mathrm{n} \mathrm{C}_{1}[+$ velar $] \rightarrow \mathrm{n} \mathrm{C}_{1}[+$ palatal $]$
- $\mathrm{n} \rightarrow \mathrm{y}$ / _ C[+lateral] V[+front]
- $s s \rightarrow s:$
- $\mathrm{C}_{1}=\{\mathrm{x}, \mathrm{f}\} \rightarrow \mathrm{w} / \mathrm{C}_{1} V_{-}$
- l \rightarrow r / V[+back] _ V
- $\theta \rightarrow \underline{\theta} / \mathrm{s}$, _ s , _s
- $\mathrm{sj} \rightarrow \int$
- $s \rightarrow \int /$ _i

MGPs	IPA	MGPs	IPA
c	k	p	p
e	e	t	t
n nd	n	č	ts
y gg	y	̂̂	ì
v m. vp	v	j	j
o	o	i	i
s	s	d dt	d
pt.	θ	ð d• $ð \mathrm{p}$	б
šč.	s	h c.	x
r	I	¢ g.	\uparrow
11 l	1	ê	è
ł	t	ô	ò
mmp	m	â	à
a	a	u	u
fp .	f	f. v. ð.	\varnothing
g gc	g		

Table 7.1: Layer 1 to layer 2 s conversions.

- $\widehat{\mathrm{ts}} \mathrm{j} \rightarrow \mathrm{ts}$
- $\widehat{\mathrm{ts}} \rightarrow \widehat{\mathrm{t}} /{ }_{-} \mathrm{i}$
- $\mathrm{sj} \rightarrow \boldsymbol{c}$
- $s \rightarrow 6$ / _i
- $\mathrm{C}_{1}[+$ voiced, + plosive $] \rightarrow \mathrm{C}_{1}[$-voiced, +ejective] / 4
- $\mathrm{C}_{1}[+$ voiced, + plosive $] \rightarrow \mathrm{C}_{1}[$-voiced, - aspirated $] / \mathrm{C}_{2}[$-voiced $]$

Plosives in a coda are unreleased. All unvoiced plosives and affricates outside of a coda are aspirated.

While Narâb Crîp has two tone levels phonemically, their realizations in the phonetic level is more complex. It is common to describe phonetic tone using seven levels, from 0 (the lowest) to 6 (the highest). Each syllable has one or more tones.

In order to describe tone, we must introduce the concept of "stress", which is placed according to the following rules:

- Syllables with a high tone have a priority over syllables with a low tone - that is, a syllable with a low tone will be selected only if the word in question has only low-tone syllables.
- If the 2nd-to-last syllable has a vowel of [i] or [i] and an empty coda, then the syllables are chosen in the order 3rd-to-last \rightarrow 2nd-to-last \rightarrow last \rightarrow 4th-to-last $\rightarrow \ldots \rightarrow$ first.
- If the coda of the final syllable is either empty or is [s] or [n], then:
- If the 3rd-to-last syllable has a nonempty coda but the 2nd-to-last syllable does not, then the syllables are chosen in the order 3rd-to-last \rightarrow 2nd-to-last \rightarrow last \rightarrow 4th-to-last $\rightarrow \ldots$ first.
- Otherwise, the syllables are chosen in the order 2nd-to-last \rightarrow 3rd-to-last \rightarrow last \rightarrow 4th-to-last $\rightarrow \ldots$ first.
- If the coda of the final syllable is a complex coda, then the syllables are chosen in the order last \rightarrow 3rd-to-last \rightarrow 2nd-to-last \rightarrow 4th-to-last $\rightarrow \ldots$ first.
- If the coda is anything else, then the syllables are chosen from end to start: last \rightarrow 2nd-to-last \rightarrow 3rd-to-last $\rightarrow \ldots \rightarrow$ first.
- Monosyllabic function words generally lack any stressed syllable.

We also introduce the concept of a tone accounting unit (TAU), which is the level at which tones are realized. That is, the tone of a syllable depends only on the contents of the TAU in which it lies. Instances of content words occupy different TAUs from each other, but some function words occupy the same TAU as the preceding or following word (in particular, such words have no stressed syllable and are confined to a relatively fixed position):

- Head particles, nominalized verb particles, and monosyllabic determiners occupy the same TAU as the following word.
- 〈so〉, monosyllabic relationals ... occupy the same TAU as the preceding word.
(Stress is accounted by orthographic word, not by TAU.)
First, two adjacent vowels are fused into a diphthong if the vowels are not identical, the first vowel is stressed, the second vowel is [i] or [u], and the syllable to which the second vowel belongs can be interpreted as having an empty coda. For purposes of tonekeeping, a diphthong is considered to be composed of two different syllables.

In general, unstressed H and L syllables have tone levels 4 and 2, respectively; stressed H and L syllables have tone levels 5 and 1 . However, an open H or L syllable before a stressed syllable gets level 3 or 1, respectively, instead. Diphthongs get different values: 65 for HH, 53 for HL, 13 for LH, and 21 for LL.

If two adjacent copies of an identical vowel have the same tone level at this stage, then the one closer to the stressed syllable rises by one tone level and the one farther from it falls by one level.

A tone level of n is then changed into a tone contour in the following situations, unless doing so would result in an out-of-bounds tone level:

- n to $(n: n+1)$: when the coda is [st] or [$\widehat{\mathrm{x} \theta}]$
- n to ($n: n-1$): when the coda is [r θ] or [$n s$]
- n to $(n+1: n)$: when the nucleus is preceded by two or more voiceless consonants

In addition, other syllables change their tone levels:

- Raise the tone level by 1 (if it is not already 6) if the coda is a voiceless fricative, or if the coda is [$\widehat{\mathrm{x} \theta}]$.
- Lower the tone level by 1 if the coda is [x].
- Lower the tone level by 1 if the coda is a nasal followed by a voiced obstruent or nasal.

Finally, if all tones have a level of 4 or higher, then the lowest tone (breaking ties by preferring later tones) is lowered to 3 , and all other tones in the same syllable are lowered by the same amount. All level-3 tones are then lowered to level 2.

7.2.1 Isochrony

The isochrony of Narâp Crîp falls somewhere between syllable and mora timing, where:

- The body of a syllable is always 1 unit long.
- The coda of a syllable is between 0 and 1 unit long, with the hierarchy $/ \mathrm{t}, \mathrm{k}<\mathrm{n}<\mathrm{l}, \mathrm{x}<$ $\mathrm{f}, \mathrm{s}, \mathrm{\theta}, \mathrm{x} \theta, \mathrm{k} \theta<\mathrm{st}, \mathrm{lt}, \mathrm{ns}, \mathrm{ls}, \mathrm{n} \theta /$.
- Codas are shortened after two consecutive vowels: for instance, the $\langle l\rangle$ in \langle moriel \rangle is pronounced for less time than that in $\langle\mathrm{mjarel}\rangle$.

Chapter 8

Layers $2 \mathrm{w}-4 \mathrm{w}$: The typography of Narâp Crîb

In principle, layer 2 w is the highest written layer needed to write in Narâp Crîp. (Note that there is only one valid layer- 2 w representation for each layer- 1 string; in other words, changing a valid layer- 2 w string in a way that preserves the layer- 1 representation always results in an invalid layer-2w string.) However, speakers of Narâb Crîp tend to value aesthetics, even in writing. Thus, a mastery of handwriting beyond layer 2 w is considered crucial.

Even though movable type has been available for a long time, prominent parts of printed materials (such as titles) often continued to use plates engraved from handwriting. Eventually, typography and calligraphy were considered parts of the same discipline, leading to typefaces supporting more features from the latter. Even today, logos often opt for lettering over typefaces. Because of this unification, we use the term typography to refer to the discipline of laying out writing in general.

Although a full treatment of Narâb Crîp typography is out of scope for this grammar, this section gives an overview of the concerns at hand.

8.1 Kerning

Cenvos is a script that absolutely requires kerning. To start, some glyphs such as ${ }^{2}\langle\mathrm{e}\rangle$ and $^{2}\langle\mathrm{~m}\rangle$ have long leftward tails that necessitate kerning with glyphs such as ${ }^{2}\langle s\rangle$ or ${ }^{2}\langle 0\rangle$, which lack descenders, or even some glyphs with descenders such as ${ }^{2}\langle j\rangle$.

Other glyphs such as ${ }^{2}\langle j\rangle$ and ${ }^{2}\langle\hat{e}\rangle$ have shorter leftward descenders that also require kerning with following glyphs.
${ }^{2}\langle\hat{a}\rangle$ has a descender in the opposite direction; thus, it must kern with certain preceding glyphs.

Diagonal strokes with matching slopes (such as in ${ }^{2}\langle\hat{\mathrm{a} v}\rangle$ or $\left.{ }^{2}\langle\mathrm{r} j\rangle\right)$ should be kerned to bring them closer.

Moreover, even pairs are sometimes insufficient. Since ${ }^{2}\langle\mathrm{e}\rangle$ and ${ }^{2}\langle\mathrm{i}\rangle$ are kerned so closely, ${ }^{2}\langle e i\rangle$ must itself kern with glyphs such as ${ }^{2}\langle\mathrm{~s}\rangle$.

8.2 Ligation and shaping

Another important aspect of typography is the use of ligatures (beyond the required ones). The concepts of higher written layers and the hierarchy of graphic variations have been developed

Figure 8.1: Examples of glyph pairs that require kerning: ${ }^{2}\langle\mathrm{es}\rangle,{ }^{2}\langle\mathrm{mj}\rangle,{ }^{2}\langle\mathrm{jo}\rangle,{ }^{2}\langle\mathrm{e} \mathrm{n}\rangle,{ }^{2}\langle\mathrm{ca}\rangle$, and ${ }^{2}\langle a ̂ v\rangle$.

Figure 8.2: Kerning of ${ }^{2}\langle\mathrm{eis}\rangle$ and ${ }^{2}\langle\mathrm{eig}\rangle$. In $^{2}\langle$ eis $\rangle,{ }^{2}\langle$ ei \rangle has room to kern with ${ }^{2}\langle\mathrm{~s}\rangle .{ }^{2}\langle\mathrm{ei}\rangle$ obviously cannot kern with ${ }^{2}\langle\mathrm{~g}\rangle$; that is, in $^{2}\langle$ eig $\rangle,{ }^{2}\langle i\rangle$ and ${ }^{2}\langle\mathrm{~g}\rangle$ are spaced farther apart than usual.

Figure 8.3: (a) An example of a bad ligature, in which the first glyph ends at the baseline and the second glyph starts at the top line. In the next example, the second glyph starts at the baseline as well, avoiding an awkward joining point. (b) A difference in stroke order (shown with the glyph ${ }^{2}\langle\mathrm{a}\rangle$) can change the starting points (shown as blue dots) and the ending points (shown as red dots) of a glyph. (${ }^{3}\left\langle\mathrm{a}_{1 \alpha}\right\rangle$ does not have a starting point suitable for ligation.) (c) The first stroke of ${ }^{3}\left\langle\mathrm{a}_{1 \alpha}\right\rangle$ blocks ligation from a previous glyph, but such a stroke is absent in ${ }^{3}\left\langle\mathrm{a}_{1 \beta}\right\rangle$. (d) The default variant ${ }^{4}\left\langle\mathrm{i}_{2 \alpha}\right\rangle$ in comparison to ${ }^{4}\left\langle\mathrm{i}_{2 \alpha}{ }^{5}\right\rangle$ (both ligated after ${ }^{4}\left\langle\mathrm{f}_{1 \alpha}\right\rangle$).
to try to formalize this problem.
To explain the idea behind this model, we note that a good ligature will have the end of one glyph near the start of the next. The starting and ending points of a glyph, in turn, depend on the order in which the strokes are written.

Furthermore, natural handwriting tends to join certain strokes together. In some cases, this joining can affect how a glyph ligates; for instance, ${ }^{3}\left\langle\mathrm{a}_{1 \alpha}\right\rangle$ cannot ligate with the previous character (ligating through the middle would cause a stroke collision with stroke 2 of ${ }^{3}\left\langle\mathrm{a}_{1 \alpha}\right\rangle$), but ${ }^{3}\left\langle\mathrm{a}_{1 \beta}\right\rangle$, in which the two strokes are joined without a loop, can do so.

In addition, rapid handwriting often produces stylistic variations of glyphs. For example, ${ }^{3}\left\langle\mathrm{i}_{2 \alpha}\right\rangle$ ("" ${ }^{2}\langle\mathrm{i}\rangle$ with the stroke going upward") can often end in a leftward swash at the end of the stroke. Since this deviation does not create any ambiguity, it has been accepted, yielding the stylistic variant ${ }^{4}\left\langle\mathrm{i}_{2 \alpha}{ }^{5}\right\rangle$.

We now cover the formalism itself. Layers $2 \mathrm{w}^{*}, 3 \mathrm{w}$, and 4 w are aesthetic layers; the writer decides the precise sequence of glyphs to realize a layer- 2 w string in higher layers. Nonetheless, not all layer-3w or -4 w strings are valid, even those that correspond to valid layer- 2 w strings; for instance, $\left\langle\overline{3_{s_{1}} i_{1}}\right\rangle$ is not a valid realization of ${ }^{2}\langle$ si \rangle because it requires a base-to-top ligation.

Only some glyphs participate in typesetting. Notably, all letters participate, but no numerals do so, nor does the space.

Each participating layer- $2 \mathrm{w}^{*}$ glyph has a hierarchy of variations as follows:

- At the top level is the layer- $2 \mathrm{w}^{*}$ glyph itself.
- These are divided into stroke-order variants, which differ only in stroke order. All strokes must be preserved, and no loops may be introduced or removed, but the rel-

+merlan \#flirora

Figure 8.4: What ${ }^{3}\left\langle\overline{{ }_{1 \alpha} \mathrm{me}_{1 \alpha}} \overline{\mathrm{r}_{1 \alpha} \mathrm{l}_{2 \beta}} \mathrm{a}_{1 \alpha} \mathrm{n}_{1 \alpha} \overline{\#_{1 \alpha} \mathrm{f}_{1 \alpha} \mathrm{l}_{2 \delta} \mathrm{i}_{1 \beta}} \mathrm{r}_{1 \alpha} \overline{\mathrm{o}_{1 \alpha} \mathrm{r}_{2 \alpha} \mathrm{a}_{3 \beta}}\right\rangle$ would look like.
ative stroke order might be different, and some strokes may be written in the reverse direction; furthermore, a stroke may be split at a turn, and two strokes may be joined where one ends and another begins. These are denoted with subscript numerals: ${ }^{2}\langle\mathrm{a}\rangle$ has variants ${ }^{3}\left\langle\mathrm{a}_{1}\right\rangle,{ }^{3}\left\langle\mathrm{a}_{2}\right\rangle$, and ${ }^{3}\left\langle\mathrm{a}_{3}\right\rangle$. Variant 1 is considered the 'canonical' variant.

- Each stroke-order variant has one or more topological variants, which may join strokes together, cause two different strokes to touch each other when they did not (or vice versa), or introduce or remove loops. Lengthening or shortening strokes to alter ligation properties also falls under this level. Topological variants are distinguished using lowercase Greek letters. For instance, ${ }^{3}\left\langle\mathrm{a}_{1}\right\rangle$ has three topological variants: ${ }^{3}\left\langle\mathrm{a}_{1 \alpha}\right\rangle,{ }^{3}\left\langle\mathrm{a}_{1 \beta}\right\rangle$, ${ }^{3}\left\langle\mathrm{a}_{1 \gamma}\right\rangle . \alpha$ is reserved for the canonical variant, which preserves all strokes, although it is not always the most common variant.
- Each topological variant has one or more stylistic variants, which can modify the strokes of the glyph themselves. For instance, ${ }^{4}\left\langle\mathbf{i}_{2 \alpha}\right\rangle$ is the topological variant of ${ }^{2}\langle i\rangle$ in which the stroke goes from the base to the top. It has two stylistic variants: ${ }^{4}\left\langle\mathrm{i}_{2 \alpha}\right\rangle$ is the default one, and ${ }^{4}\left\langle\mathrm{i}_{2 \alpha}{ }^{5}\right\rangle$ has a swash to the left at the top of the stroke. Note that the 'canonical' stylistic variant has no superscript letter, while the other variants do.

Layer 2 w is transliterated using mostly the same symbols as the layer- 1 romanization, but required ligatures are notated with an overline (such as in ${ }^{2}\langle\overline{\mathrm{me}}\rangle$ for $\bar{\jmath}$), and final forms are written as if they were ligatures with a special $\$$ symbol: ${ }^{2}\left\langle\overline{\mathrm{c} \$\rangle}\right.$ for Γ. Layer $2 \mathrm{w}^{*}$ introduces discretionary ligatures, which are similarly marked in our notation. By discretionary ligature, we mean a ligature that the writer may choose to use but is not obligated to do so, and that cannot be derived by simply connecting the ending stroke of one glyph to the starting stroke of another.

Layer 3 w works on topological variants. The overline denotes optional ligatures between topological variants; it is now omitted for required and discretionary ligatures, which are their own layer- $2 \mathrm{w}^{*}$ glyphs in their own right: ${ }^{3}\left\langle\overline{{ }_{1 \alpha} \mathrm{me}_{1 \alpha}} \overline{\mathrm{r}_{1 \alpha} \mathrm{l}_{2 \beta}} \mathrm{a}_{1 \alpha} \mathrm{n}_{1 \alpha} \overline{\#_{1 \alpha} \mathrm{f}_{1 \alpha} \mathrm{l}_{2 \delta} \mathrm{i}_{1 \beta}} \mathrm{r}_{1 \alpha} \overline{\mathrm{o}_{1 \alpha} \mathrm{r}_{2 \alpha} \mathrm{a}_{3 \beta}}\right\rangle$ transliterates a particularly fancy realization of 〈+merlan \#flirora〉.

Layer 4 w works on stylistic variants. In the transliteration, the overline is used as in 3 w .
Layer 3 w can be thought of as the 'ligation layer'; similarly, layer 4 w can be thought of as the 'shaping layer'.

Table 8.1 describes the canonical stroke order of each glyph, and Table 8.2 lists the strokeorder variants.

Table 8.1: Canonical stroke orders for layer-2 w^{*} glyphs. (Glyphs in parentheses are discretionary ligatures.)

Glyph Stroke order

c (1) Counterclockwise
e (1) From top right to bottom left
n (1) From top left to bottom right
y (1) From top right to bottom
v (1) From right to left
o (1) From top to bottom left
s (1) From top right to bottom left
b (1) Rightmost stroke from right to left
(2) Leftmost stroke from right to left
š (1) From top right to bottom left
\mathbf{r} (1a) From bottom to top (1b) to left
1 (1a) r-stroke from bottom to top (1b) to left
(2) Intersecting stroke from right to left
$1 \quad$ (1a) o-stroke from top to bottom (1b) to left
(2) Intersecting stroke from right to left
m (1) e-stroke from top right to bottom left
(2) Intersecting stroke from right to left
a (1) b-sloping stroke from left to right
(2) f-sloping stroke from right to left
f (1) Rightmost stroke from right to left
(2) Leftmost stroke from right to left
g (1) From top right to bottom
p (1) From right to bottom
t (1a) v-stroke from right to top (1b) to left
(2) Vertical stroke from top to bottom
č (1) Ascending stroke from top to bottom
(2) f-sloping stroke from right to left
î (1) From bottom right to top left
j (1) From top right to bottom left
i (1) From top to bottom
d (1) b-sloping stroke from left to right
(2) f-sloping stroke from right to left
ð (1) Leftmost p-sloping stroke from left to right
(2) Rightmost p-sloping stroke from left to right
(3) f-sloping stroke from right to left
h (1) From right to left

Table 8.1: Canonical stroke orders for layer- $2 \mathrm{w}^{*}$ glyphs. (Glyphs in parentheses are discretionary ligatures.) (Continued)

Glyph Stroke order

h (1) Clockwise, starting and ending at the top
$\hat{\mathbf{e}} \quad$ (1) From top right to bottom left
o (1) From top to bottom
$\hat{\mathbf{a}} \quad$ (1) From bottom right to top left
u (1) o-stroke from top to bottom left
(2) Rightmost dot
(3) Leftmost dot
w (1) From top to bottom
$\mathbf{x} \quad$ (1) Stroke with descender, starting from the top-right corner and ending on the descender
(2) Wave stroke, from right to left
y (1) From right to left
z (1) From right to left
$\overline{\mathbf{c} \$} \quad$ (1) From right to bottom left
$\overline{\mathbf{y} \$} \quad$ (1) η-stroke from top right to bottom
(2) Intersecting stroke from right to left
$\overline{\mathbf{e e}} \quad$ (1) e-stroke from top right to bottom left
(2) Overbar from right to left
$\overline{\mathbf{e m}} \quad$ (1) e-stroke from top right to bottom left
(2) Roof from right to lef
$\overline{\mathbf{m e}} \quad$ (1) e-stroke from top right to bottom left
(2) Intersecting stroke from right to left
(3) Overbar from right to left
$\overline{\mathbf{m m}} \quad$ (1) e-stroke from top right to bottom left
(2) Intersecting stroke from right to left
(3) Roof from right to left
$\overline{\mathbf{j a ̂}} \quad$ (1) j-stroke from top right to bottom left
(2) Ring clockwise (Starting and ending point unspecified)
$\overline{\hat{a} \mathbf{j}} \quad$ (1) \hat{a}-stroke from bottom right to top left
(2) Ring clockwise (starting and ending point unspecified)
$\overline{\mathbf{w} \mathbf{w}} \quad$ (1) w -stroke, from top to bottom
(2) Ring clockwise (starting and ending point unspecified)
$\overline{\mathbf{x x}} \quad$ (1) Stroke with descender, starting from the top-right corner and ending on the descender
(2) Wave stroke, from right to left
(3) Bottom-right tick
(4) Top-left tick

Table 8.1: Canonical stroke orders for layer- $2 \mathrm{w}^{*}$ glyphs. (Glyphs in parentheses are discretionary ligatures.) (Continued)

Glyph Stroke order

$\overline{\mathbf{y y}} \quad$ (1) y-stroke, from right to left
(2) Tick, from top to bottom
$\overline{\mathbf{z z}} \quad$ (1) z -stroke, from right to left
(2) Ring clockwise (starting and ending point unspecified)
\# (1) From bottom right to top left
$+\quad$ (1) From top right to bottom left
+* (1) From top right to bottom left
(2) Vertical stroke from top to bottom
(3) f-sloping stroke from top right to bottom left
(4) b-sloping stroke from bottom right to top left
@ (1) Vertical stroke from top to bottom
(2) v-stroke from right to left

* (1) Vertical stroke from top to bottom
(2) Horizontal stroke from right to left
(3) f-sloping stroke from top right to bottom left
(4) b-sloping stroke from bottom right to top left
\& (1) Sinusoid from right to left
(2) Arrowhead
- (1) Main stroke from right to left
(2) Arrowhead
; (1) Main stroke from right to left
(2) Arrowhead
? (1) Main stroke from right to left
(2) Arrowhead
! (1) Main stroke from right to left
(2) Arrowhead
$\{\quad$ (1) From right to left
\} (1) From right to left
« (1) From top to bottom
» (1) Vertical stroke from top to bottom
(2) Left cornered edge from top to bottom
/ (1) From bottom, curving at the top toward the left, then descending while crossing to the right half and possibly to the left again
($\overline{\mathbf{r a}) \quad(1) S t r o k e ~ a s ~ i n ~}{ }^{2}\langle r\rangle$, but with the end extending to the descender line
(2) Stroke intersecting the second part of stroke 1
(ㅍo) (1a) The stem of the ${ }^{2}\langle r\rangle$-stroke, from bottom to top (1b) $\mathrm{A}^{2}\langle\mathrm{v}\rangle$-stroke from right to left

Figure 8.5: Canonical stroke orders of layer-2w glyphs.

Figure 8.6: Stroke orders of discretionary ligatures.
Table 8.2: Stroke order variants of glyphs, in reference to the canonical stroke order (Table 8.1). The prime symbol denotes the reverse direction; the plus denotes a fused stroke.

Table 8.2: Stroke order variants of glyphs, in reference to the canonical stroke order (Table 8.1). The prime symbol denotes the reverse direction; the plus denotes a fused stroke. (Continued)

Glyph	1	2	3	4	5	6
d	12	21^{\prime}	$1^{\prime} 2$			
ð	123	312				
h	1					
h	1					
ê	1					
ô	1					
â	1					
u	123					
w	1					
x	12					
y	1					
z	1					
c\$	1					
$\overline{\mathbf{y}}$	12	12^{\prime}				
$\overline{\mathbf{e e}}$	12	21				
$\overline{\mathbf{e m}}$	12	21				
$\overline{\mathbf{m e}}$	123	2'13	12'3	312	$32^{\prime} 1$	312^{\prime}
$\overline{\mathbf{m m}}$	123	2'13	12'3	312	$32^{\prime} 1$	312^{\prime}
$\overline{\mathrm{jax}}$	12					
âj	12					
$\overline{\mathbf{w w}}$	12					
$\overline{\mathbf{x x}}$	1234					
$\overline{\mathrm{yy}}$	12					
$\overline{\mathbf{z Z}}$	12					
\#	1					
+	1					
+*	1234					
@	12					
*	1234					
\&	12					
	12					
;	12					

Continued on next page

Table 8.2: Stroke order variants of glyphs, in reference to the canonical stroke order (Table 8.1). The prime symbol denotes the reverse direction; the plus denotes a fused stroke. (Continued)

Glyph	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$?$	12					
$!$	12					
$\{$	1					
$\}$	1					
$«$	1					
$»$	12	$1+2^{\prime}$				
$/$	1					
$(\overline{\mathbf{r a}})$	12					
$(\overline{\mathbf{r o}})$	1	$1 \mathrm{a}^{\prime} 1 \mathrm{~b}$				

Table 8.3: Topological variants of glyphs: ligation properties and descriptions. (Stroke numbers are in reference to the stroke-order variant, not the 2 w glyph.)

Glyph	Start join	End join	Description	Use
$\mathrm{c}_{1 \alpha}$	M	-	Default	Default
$\mathrm{e}_{1 \alpha}$	Mv	D	Default	Default
$\mathbf{e}_{1 \beta}$	Bv	D	Stem shortened to start at base	After glyphs that end at the base
$\mathrm{n}_{1 \alpha}$	-	-	Default	Default
$\mathbf{n}_{2 \alpha}$	B	M	Default	Before glyphs that start at the mid
$\mathrm{y}_{1 \alpha}$	M	Dv	Default	Default
$\mathrm{v}_{1 \alpha}$	B	B	Default	Default
$\mathrm{o}_{1 \alpha}$	Tv	M	Default	Default
$\mathbf{o}_{1 \beta}$	M	M	Loop on stroke to allow for mid ligation with previous glyph	After glyphs that end at the mid
$\mathrm{s}_{1 \alpha}$	M	B	Default	Default
$\mathrm{p}_{1 \alpha}$	B	M	Default	Default
$\mathbf{p}_{1 \beta}$	B	M	Strokes 1 and 2 connected	Stylistic
$\check{s}_{1 \alpha}$	M	Bv	Default	Default
$\mathbf{r a x}_{1 \alpha}$	Dv	B	Default	Default

Continued on next page

Table 8.3: Topological variants of glyphs: ligation properties and descriptions. (Stroke numbers are in reference to the stroke-order variant, not the 2 w glyph.) (Continued)

Glyph	Start join	End join	Description	Use
$\mathbf{r}_{2 \alpha}$	Mv	B	Default	Rare (β form is more common), but sometimes after glyphs that end at the mid
$\mathbf{r}_{2 \beta}$	Bv	B	Stroke 1 disconnected from 2 (starts at base instead)	After glyphs that end at the base
$\mathrm{l}_{1 \alpha}$	Dv	M	Default	Default
$\mathrm{l}_{1 \beta}$	Dv	M	Strokes 1 and 2 connected	Stylistic
$\mathrm{l}_{2 \alpha}$	Mv	M	Default	Rare (β form is more common), but sometimes after glyphs that end at the mid
$\mathrm{l}_{2 \beta}$	Bv	M	Stroke 1 disconnected from 2 (starts at base instead)	After glyphs that end at the base
$\mathbf{l}_{2 \gamma}$	Mv	M	Strokes 2 and 3 connected	Rare (δ form is more common), but stylization of α
$\mathbf{l}_{2 \delta}$	Bv	M	Stroke 1 disconnected from 2 (starts at base instead), and strokes 2 and 3 connected	Stylization of β
$\mathbf{l}_{1 \alpha}$	Tv	BD	Default	Default
$\mathbf{l}_{1 \beta}$	Tv	BD	Strokes 1 and 2 connected	Stylistic
$\mathrm{m}_{1 \alpha}$	Mv	-	Default	Default
$\mathbf{m}_{2 \alpha}$	-	D	Default	Rare; β form is more common
$\mathbf{m}_{2 \beta}$	-	D	Strokes 1 and 2 connected	Stylistic
$\mathrm{m}_{3 \alpha}$	Mv	-	Default	Rare; β form is more common
$\mathbf{m}_{3 \beta}$	Mv	-	Strokes 1 and 2 connected	Stylistic
$\mathrm{a}_{1 \alpha}$	-	D	Default	Default
$\mathrm{a}_{1 \beta}$	M	D	Strokes 1 and 2 fused, with 2 beginning where 1 ends (without a loop)	Stylistic ('italic' variant)
$\mathrm{a}_{1 \gamma}$	-	D	Strokes 1 and 2 connected (with a loop)	Stylistic

Table 8.3: Topological variants of glyphs: ligation properties and descriptions. (Stroke numbers are in reference to the stroke-order variant, not the 2 w glyph.) (Continued)

Glyph	Start join	End join	Description	Use
$\mathbf{a}_{2 \alpha}$	M	M	Default	After glyphs that end at the mid
$\mathbf{a}_{2 \beta}$	M	M	Strokes 1 and 2 connected (rare)	Stylistic
$\mathbf{a}_{3 \alpha}$	B	D	Default	After glyphs that end at
				the base

Table 8.3: Topological variants of glyphs: ligation properties and descriptions. (Stroke numbers are in reference to the stroke-order variant, not the 2 w glyph.) (Continued)

Glyph	Start join	End join	Description	Use
$\mathrm{h}_{1 \alpha}$	-	-	Default	Default
$\hat{\mathbf{e}}_{1 \alpha}$	M	D	Default	Default
$\hat{\mathbf{e}}_{1 \beta}$	M	-	Stroke bends to the right at the end, preventing linkage with the next glyph	Stylistic
$\hat{\mathbf{o}}_{1 \alpha}$	M	D	Default	Default
$\hat{\mathbf{a}}_{1 \alpha}$	D	M	Default	Default
$\mathbf{u}_{1 \alpha}$	Tv	DB	Default	Default
$\mathbf{u}_{1 \beta}$	M	DB	Loop on stroke 1 to allow for mid ligation with previous glyph	After glyphs that end at the mid
$\mathrm{W}_{1 \alpha}$	M	Dv	Default	Default
$\mathrm{x}_{1 \alpha}$	M	M	Default	Default
$\mathrm{y}_{1 \alpha}$	B	B	Default	Default
$\mathrm{z}_{1 \alpha}$	B	B	Default	Default
c\$ ${ }_{1 \alpha}$	M	D	Default (in practice, final forms have no successor to ligate to)	Default
y ${ }_{1}{ }_{1}$	M	DB	Default	Default
y $\mathbf{\$}_{2 \alpha}$	M	-	Default	Rare; β form is more common
y $\$_{2 \beta}$	M	-	Strokes 1 and 2 connected	Stylistic
$\mathrm{ee}_{1 \alpha}$	Mv	M	Default	Default
$\mathbf{e e}_{2 \alpha}$	M	D	Default	Sometimes after a glyph that ends at the mid
$\mathbf{e e}_{2 \beta}$	M	D	Strokes 1 and 2 connected (uncommon)	Stylistic
$\mathrm{em}_{1 \alpha}$	Mv	M	Default	Default
$\mathbf{e m}_{2 \alpha}$	M	D	Default	Stylistic
em ${ }_{2 \beta}$	M	D	Strokes 1 and 2 connected (uncommon)	Stylistic
me ${ }_{1 \alpha}$	Mv	M	Default	Default
$\mathrm{me}_{2 \alpha}$	-	M	Default	Stylistic
$\mathrm{me}_{2} \boldsymbol{\beta}$	-	M	Strokes 1 and 2 connected	Stylistic
$\mathrm{me}_{3 \alpha}$	Mv	M	Default	Stylistic

Table 8.3: Topological variants of glyphs: ligation properties and descriptions. (Stroke numbers are in reference to the stroke-order variant, not the 2 w glyph.) (Continued)

Glyph	Start join	End join	Description	Use
$\mathbf{m e x}_{3 \beta}$	Mv	M	Strokes 1 and 2 connected	Stylistic
$\mathrm{me}_{3 \gamma}$	-	M	Strokes 2 and 3 connected	Stylistic
$\mathrm{me}_{3 \delta}$	-	M	Strokes 1, 2, and 3 connected	Stylistic
$\mathbf{m e}_{4 \alpha}$	M	D	Default	Sometimes after a glyph that ends at the mid
$\mathrm{me}_{4 \beta}$	M	D	Strokes 1 and 2 connected	Stylistic
$\mathrm{me}_{5 \alpha}$	M	D	Default	Sometimes after a glyph that ends at the mid
$\mathrm{me}_{5 \beta}$	M	D	Strokes 1 and 2 connected	Stylistic
me ${ }_{5 \gamma}$	M	D	Strokes 2 and 3 connected	Stylistic
$\mathrm{me}_{5 \delta}$	M	D	Strokes 1, 2, and 3 connected	Stylistic
$\mathrm{me}_{6 \alpha}$	M	-	Default	Sometimes after a glyph that ends at the mid
$\mathrm{me}_{6 \beta}$	M	-	Strokes 1 and 2 connected	Stylistic
me ${ }_{6 \gamma}$	M	-	Strokes 2 and 3 connected	Stylistic
me_{6}	M	-	Strokes 1, 2, and 3 connected	Stylistic
$\mathbf{m m}_{1 \alpha}$	Mv	M	Default	Default
$\mathbf{m m}_{2 \alpha}$	-	M	Default	Stylistic
$\mathbf{m m}_{2 \beta}$	-	M	Strokes 1 and 2 connected	Stylistic
$\mathbf{m m}_{3 \alpha}$	Mv	M	Default	Stylistic
$\mathrm{mm}_{3 \beta}$	Mv	M	Strokes 1 and 2 connected	Stylistic
$\mathbf{m m}_{3 \gamma}$	-	M	Strokes 2 and 3 connected	Stylistic
$\mathbf{m m}_{3 \delta}$	-	M	Strokes 1, 2, and 3 connected	Stylistic
$\mathbf{m m}_{4 \alpha}$	M	D	Default	Sometimes after a glyph that ends at the mid
$\mathbf{m m}_{4 \beta}$	M	D	Strokes 1 and 2 connected	Stylistic
$\mathbf{m m}_{5 \alpha}$	M	D	Default	Sometimes after a glyph that ends at the mid
$\mathbf{m m}_{5 \beta}$	M	D	Strokes 1 and 2 connected	Stylistic
$\mathbf{m m}_{5 \gamma}$	M	D	Strokes 2 and 3 connected	Stylistic
$\mathbf{m m}_{5 \delta}$	M	D	Strokes 1, 2, and 3 connected	Stylistic

Table 8.3: Topological variants of glyphs: ligation properties and descriptions. (Stroke numbers are in reference to the stroke-order variant, not the 2 w glyph.) (Continued)

Glyph	Start join	End join	Description	Use
$\mathbf{m m}_{6 \alpha}$	M	-	Default	Sometimes after a glyph that ends at the mid
$\mathrm{mm}_{6 \beta}$	M	-	Strokes 1 and 2 connected	Stylistic
$\mathbf{m m}_{6 \gamma}$	M	-	Strokes 2 and 3 connected	Stylistic
$\mathrm{mm}_{6 \delta}$	M	-	Strokes 1, 2, and 3 connected	Stylistic
j $\hat{1}_{1 \alpha}$	M	M	Default	Default
$\hat{a f}_{1 \alpha}$	D	D	Default	Default
$\mathrm{w}_{1}{ }_{1}$	M	-	Default	Default
$\mathrm{xx}_{1 \alpha}$	M	D	Default	Default
$\mathrm{yy}_{1 \alpha}$	B	M	Default	Default
$\mathrm{zz}_{1 \alpha}$	B	-	Default	Default
$\#_{1 \alpha}$	-	M	Default	Default
${ }_{1+\alpha}$	-	M	Default	Default
$+{ }_{1 \alpha}$	-	-	Default	Default
$@_{1 \alpha}$	Tv	M	Default	Default
$@_{1 \beta}$	M	M	Loop on stroke 1 to allow for mid ligation with previous glyph	After a glyph that ends at the mid
${ }^{*}{ }_{1 \alpha}$	-	M	Default	Default
$\&_{1 \alpha}$	-	-	Default	Default
$\cdot 1 \alpha$	MT	-	Default	Default
$;_{1 \alpha}$	B	-	Default	Default
$?_{1 \alpha}$	MT	-	Default	Default
$!_{1 \alpha}$	M	-	Default	Default
$\left\{_{1 \alpha}\right.$	T	Tv	Default	Default
$\}_{1 \alpha}$	Bv	B	Default	Default
${ }_{1}{ }_{1 \alpha}$	-	-	Default	Default
${ }^{1}{ }_{1 \alpha}$	-	-	Default	Default
${ }_{2} \alpha^{\alpha}$	-	-	Default	Stylistic (handwriting variant)
$/{ }_{1 \alpha}$	-	-	Default	Default
$\mathrm{ra}_{1 \alpha}$	Dv	-	Default	Default
$\mathrm{rO}_{1 \alpha}$	Dv	M	Default	Default
				Continued on next page

Table 8.3: Topological variants of glyphs: ligation properties and descriptions. (Stroke numbers are in reference to the stroke-order variant, not the 2 w glyph.) (Continued)

Glyph	Start join	End join	Description	Use
$\mathbf{r o}_{2 \alpha}$	Mv	M	Default	Rare $(\beta$ form is more common), but sometimes after glyphs that end at the mid
$\mathbf{r o}_{2 \beta}$	Bv	M	Stroke 1 disconnected from 2 (starts at base instead)	After glyphs that end at the base

Table 8.3 lists all topological variants with their possible join positions on each side, with B for base, M for mid (or mean), T for top (ascender line), and D for descender. If more than one position is listed, then any one of them can be used. A v suffix on a position indicates that the stroke end at the appropriate side is vertical.

In general, for two topological variants a and b to ligate to each other (in that order), there must exist a position C such that a can join at C endward and b can join at C startward, with at least one end not being vertical.

There are a few exceptions to this rule: any topological variant of ${ }^{2}\langle 1\rangle$ can be ligated before ${ }^{3}\left\langle\mathrm{i}_{2 \alpha}\right\rangle$ (see Figure 8.4 for an example).

Stylistic variants are much less standardized in comparison, but there are some widely recognized variants:

- Some topological variants $\left({ }^{3}\left\langle\mathrm{p}_{1 \beta}\right\rangle,{ }^{3}\left\langle\mathrm{j}_{1 \alpha}\right\rangle,{ }^{3}\left\langle\mathrm{i}_{2 \alpha}\right\rangle,{ }^{3}\left\langle\mathrm{c} \${ }_{1 \alpha}\right\rangle,{ }^{3}\left\langle{ }_{1}{ }_{1 \alpha}\right\rangle\right)$ have an S variant that introduces a swash at the end of the last stroke.
- In the standard forms, ${ }^{2}\langle\mathrm{e}\rangle$ and ${ }^{2}\langle\mathrm{~m}\rangle$ (as well as the required ligatures involving these) have the tail sloping slightly upwards (as it goes to the left). This tail might sometimes bend downwards (the C variant) or even start with a downward slope (the D variant).
- The rightward descending stem of a glyph such as ${ }^{3}\left\langle\mathrm{r}_{1 \alpha}\right\rangle$ can be shortened (in the H variant) after an ${ }^{2}\langle\mathrm{e}\rangle$ or ${ }^{2}\langle\mathrm{~m}\rangle$ to allow kerning.
$\left.{ }^{2}\langle \rangle\right\rangle$ and ${ }^{2}\langle\cdot\rangle$ are special: they can ligate with any participating glyph on either end, appearing as an extension of the stroke near the ${ }^{2}\left\langle{ }^{\prime}\right\rangle$ or ${ }^{2}\langle\cdot\rangle$. Nonetheless, such ligation is not particularly common.

The rules over layers 3 w and 4 w dictate only what is legal, not what is considered beautiful. (Indeed, it is perfectly legal to use the 1α form of every glyph and abstain from all non-required ligatures.) Nor do they dictate how an eligible pair of glyphs should be ligated. There are some guidelines, however, on what is desirable:

- Avoid stroke collisions
- Minimize horizontal space
- Minimize effort to write
- Prefer to ligate when possible, but avoid doing so excessively
- Prefer to use the canonical stroke-order

Connotation Properties of realization

Elegant, refined Increased use of ligation in general; use of 'broken ${ }^{2}\langle r\rangle-s t r o k e$ forms' such as ${ }^{3}\left\langle\mathbf{r}_{2 \beta}\right\rangle$ and ${ }^{3}\left\langle l_{2 \beta}\right\rangle$
Rational Use of the non-H stylistic variants of glyphs such as ${ }^{3}\left\langle\mathrm{r}_{1 \alpha}\right\rangle$ after ${ }^{2}\langle\mathrm{e}\rangle$ or ${ }^{2}\langle\mathrm{~m}\rangle$ rather than the H variants
Casual, informal Use of ${ }^{3}\left\langle\mathrm{a}_{1 \beta}\right\rangle$
Table 8.4: Expresive connotations associated with choices in layer-4w realization.

- Prefer to use the most common topological forms
- Vary the particular forms of each letter

8.2.1 Connotations associated with choices in layer-4w realization

Of course, context also plays a role in deciding how to realize text into layer 4 w . First, the purpose of the writing has an influence (text meant for children or language learners will be less embellished, and header text tneds to be more embellished than body text).

Another part of context is the expressive connotation that the writer wishes to communicate.

8.3 Vertical ligation

Another desirable practice is vertical ligation, in which the strokes of two glyphs in different lines are connected. This is naturally difficult even in handwriting, let alone in type!

Part III

Syntax

Chapter 9

Overview

For most of this text，we will be working with units that are the sentence or lower．A sentence consists of one or more independent clause phrases（ICPs），separated by $\langle;\rangle$ ，with a $\langle\rangle,\langle$ ？\rangle ，or $\langle!\rangle$ at the end．An independent clause phrase can be a general independent clause phrase （gICP）or a special independent clause phrase（siCP）．

A special independent clause phrase is one of an interjection，a vocative，a probism， or a datum（Section 9．6）．

An interjection is a word in the＂interjection＂part of speech and is not inflected．There are a few interjections，such as 〈cirtel〉 by the way，incidentally and 〈olasta〉 in addition，fur－ thermore，moreover that can never appear on their own；they must be followed by another ICP in the same sentence．Others，such as 〈cleli〉 of course，obviously，can stand on their own，but when they occur before another ICP，they can naturally be interpreted as modifying it．To put it another way，such interjections on their own imply an ellipsed statement：＂of course，that is the case＂．Such interjections constitute dependent special independent clause phrases （dsiCPs）and ambidependent special independent clause phrases（asICPs）．Of course，it can be argued that all sICPs are dsICPs or asICPs，as interjections such as 〈menco〉 oh！，I see！， look！，indeed！are related to what follows them．In any case，the presence of dsICPs and asICPs imply a structural level between the ICP and the sentence．

A vocative consists of a noun phrase in the dative case and is used to address the referent．
A probism（named after the Appendix Prob ${ }^{1}$ ）consists of one or both of a direct quotative （Section 12．12）noun phrase in the ablative case and another in the accusative case，such that $\langle « Y$ » nopa «X» ne〉 is an instruction to use the construction X rather than Y ．If both of the quotatives are present，then the ablative one comes first．

General independent clause phrases，on the other hand，are structurally more complex． We first look at the case of a single independent clause with no dependent clauses．

9．1 Independent clauses

An independent clause might or might not have a verb．We first look at the case where a verb is present．

If there is a verb，then it comes at the end of the clause（except before any tail particles）． That is，arguments and adjuncts to the verb occur before it．Because Narâp Crîp has cases， the relative order of noun phrases in a clause is usually insignificant，but the topic usually

[^8]precedes the focus, and contrastive foci are often moved immediately after the topic (if any) or immediately before the verb.

Likewise, most modifiers precede their heads. The following do not, however:

- cardinal (as opposed to an ordinal) numerals
- the second part of most compound nouns

Some types of modifiers agree with their heads and therefore can be moved away from them, as long as their relative order is preserved.
[TODO: order of modifiers]

9.1.1 Verbless clauses

Some independent clauses do not have a finite verb at the end. Nonetheless, they are treated as the head of a gICP and therefore can be a part of a so-clause.

- A clause with a nominative $\mathrm{NP} x$ alone implies the existence of whatever x refers to. In this case, x is usually understood to be new information.
- A clause with two nominative NPs x and y equates the referents of x with the referents of y.
- A clause with a nominative NP x and an accusative NP y implies that the referents of x are a subset of the referents of y.
- A clause with a nominative NP x and an a semblative NP y implies that the referents of x are like the referents of y (as described by the semblative case).

Nominative-nominative and nominative-accusative verbless clauses are often used as a pseudo-clefting construction to place a noun phrase as the focus (see Chapter 10):

```
nemirin #sapo mênčep.
```

nem-irin \#sap-o mênč-ep.
apple-ACC.SG NAME-NOM.SG eat-3sG.PAST.PFV
\#sapo ate the apple.
(2) nemirin mînčac nava \#sapo.
nem-irin mînč-ac nav-a \#sap-o.
apple-ACC.SG eat-REL.NOM,NOM.HUM person-NOM.SG NAME-NOM.SG
It was \#sapo who ate the apple.
Verbless independent clauses can also occur when the primary verb of a clause modified by a converbal clause or a so-clause is the same as that of the subordinate clause and is ellipsed.

9．2 Dependent clauses

These clauses are introduced in Chapter 12 and Chapter 13
－Quotatives（Section 12．12），which use a sentence wrapped inside quotation marks， followed by a particle
－Relative clauses（Section 13．6），which use a participle form of a verb
－Converbal clauses（Section 13．7），which use a converb
－So－clauses（Subsection 13．7．3），which use a gICP（i．e．finite form of a verb）plus a so－ particle
－Nominalized clauses（Section 13．8），which use a nominalized verb
In all such clauses，the verb comes at the end of the clause（followed by a so－particle for so－clauses）．

9．3 Head and tail particles

Narâp Crîp has both head and tail particles，which occur at the extremes of an ICP．Absolute head particles（aheadps）appear at the beginning of an ICP：
－〈ai〉 but，however is used to contrast the idea of the clause in question with that of an earlier one．
－〈ea〉 thus，therefore，in addition is used to imply that the clause in question is the result of an earlier one，or that the clause in question adds information to an earlier one．
－〈vjor〉 alternatively is used to contrast a clause with an earlier alternative．
Conjunct head particles（cheadps）appear at the beginning of an ICP，but if a so－clause is present，then it may occur at the start of the independent clause proper，immediately after the so－particle：
－〈ša〉，inside an ICP，indicates an interrogative sentence．This particle can also be used at the beginning of a so－clause，in which case it indicates an irrealis modality．
－$\langle\mathrm{le}\rangle$ indicates an imperative（Subsection 13．11．1）or hortative modality．
In informal speech，the placement of cheadps is more relaxed：they might，for instance， occur after a nominalized verb phrase or after an oblique noun phrase．

Tail particles（Tailps）are used less often than head particles and often serve a pragmatic role．Omitting them can be seen as stoic．Prosodically，the final phoneme of a tail particle is often lengthened．
－〈šan〉 indicates a tag question．If this particle is used，then 〈ša〉 is omitted，but the šac is not．
－$\langle\mathrm{pal}\rangle$ is used to make assertions．When used with the imperative，it marks a stronger imperative．When this particle appears after a word ending in $\langle-\mathrm{p}\rangle$ but not in $\langle-\mathrm{cp}\rangle$ ，then the ending and the particle dissimilate into \langle－s tal \rangle ．
－〈se〉 indicates a rhetorical question or occasionally a mirative mood．Regardless of its use，it is not used with a šac．
－〈vipca〉 marks the conditional（Subsection 13．11．2）mood．

9．4 Scope ordering

Several constructs in Narâp Crîp can produce a new scope．These include the universal and existential quantifiers 〈šino〉 and 〈nema〉，numerals，coordinate phrases，and certain auxiliary verbs．

Scopes created by noun phrases follow linear order．In other words，the outermost quan－ tifier corresponds to the outermost level of quantification：
（3）šine nemar racro．

```
šin-e nem-ar racr-o.
all-NOM.PL any-ACC.PL know-3pl
```

All of them know someone out of them．$=$ For all x ，there exists y such that x knows y ．
（4）nemar šine racro．

```
nem-ar šin-e racr-o.
any-ACC.PL all-NOM.PL know-3pl
```

There is someone out of them whom all of them know．$=$ There exists y such that for all x, x knows y ．
（5）šine \＃sapon \＃môran＇te racro．
$\begin{array}{lll}\text { šin－e \＃sap－on \＃môr－an＝＇te racr－o．} \\ \text { all－NOM．PL } & \text { NAME－ACC．sG } & \text { NAME－ACc．sG＝or }\end{array}$
All of them know either \＃sapo or \＃môra．＝For all x, x knows \＃sapo or \＃môra．
（6）\＃sapon \＃môran＇te šine racro．

$$
\begin{array}{llll}
\text { \#sab-on } & \text { \#môr-an='te } & \text { šin-e } & \text { racr-o. } \\
\text { NAME-ACC.SG } & \text { NAME-ACC.SG=or } & \text { all-NOM.PL } & \text { know-3PL }
\end{array}
$$

Either all of them know \＃sapo，or all of them know \＃môra．＝There exists y in $\{\# s a b o$, \＃môra\} such that for all x, x knows y ．

TODO：figure out scope ordering involving auxiliary verbs or subordinate clauses
（7）šinai lensat rjota．
šin－ai lens－at rjot－a．
all－dat．pl help－inf cannot－1sG
There is no one I can help．$=$ For all x ，I can＇t help x ．
（8）\＃sapo šinai lensat rjote．
\＃sab－o šin－ai lens－at rjot－e．
nAME－NOM．SG all－DAT．PL help－INF cannot－3sG
（a）There are some people \＃sapo can＇t help．
（b）There is no one \＃sapo can help．

9．5 Questions

All questions contain either the cheadp 〈ša〉 or，in the case of a tag question，the tailp 〈šan〉．If the last clause of a sentence is interrogative，then it is terminated by a \langle ？\rangle ．In colloquial speech，〈ša〉 may be omitted，but this is never done in song lyrics．

Polar questions ask whether a statement is true and are created using the cheadp 〈ša〉 on the statement that is questioned．They can be answered using 〈vil〉（the statement is true） or $\langle\mathrm{ces}\rangle$（the statement is false）．
（9）ša lê tfopos gðenuveb？
ša lê tfop－os gðen－u－ve－p？
int this．cel village－Loc．sG give＿birth－3Gc－2sG－PAST
Were you born in this village？
Tag questions，which are created using the tailp 〈šan〉 instead of 〈ša〉，are leading toward an affirmative answer．There is no separate way to create a leading question toward a negative answer．
$W_{h-Q U E S T I O N S, ~ i n ~ a d d i t i o n ~ t o ~ 〈 s ̌ a\rangle, ~ c o n t a i n ~ o n e ~ o r ~ i n t e r r o g a t i v e ~ p r o-f o r m s, ~ e a c h ~ o f ~ w h i c h ~}^{\text {en }}$ can be an interrogative pronoun（Subsection 12．10．2），a noun phrase modified by the in－ terrogative determiner 〈mê〉 which，or the pro－verb 〈nepit〉．The questioned element stays in its original position．

The following elements can be questioned：
－all noun phrases that are arguments or adjuncts the main clause
－all objects of relational phrases that are adjuncts to the main clause
－all complements of postpositional phrases that are adjuncts to the main clause
－the second element of commutative nominal coordinate structures and either element of noncommutative nominal coordinate structures，if the entire coordinate phrase could be replaced with an interrogative pronoun
－any verb in the main clause
If an interrogative pronoun is modified，then the domain of answers is similarly restricted．
Answers to $w h$－questions are given in the same order as the interrogative pro－forms ap－ pear，with the same morphological forms．

Choice questions list the options that the answer is expected to be selected from．In Narâp Crîb，they are a special case of $w h$－question，in which the interrogative pronoun 〈meel〉 which one？，with the choices，joined by the coordinator 〈＝＇ce〉，being a genitive adjunct to that pronoun，is the element being questioned．In this case，〈meel〉 can appear wherever an interrogative pronoun could，and the answers take the same form as 〈meel〉．〈meel〉 is singular if exactly one answer is expected，but plural if there is no such expectation．

9．6 Data

A datum is one of the following：
－A short numeral（alone）
－A noun phrase in the nominative case
－An amount of currency（Subsection 15．9．3），denoted using the $\left\langle 9\left\}\right.\right.$ or the $\left\langle^{*} 9\{ \}\right\rangle$ numquote
－A list whose elements are data，denoted using the $\langle 3\}\rangle$ numquote（Section 5．3）with elements separated by spaces．Elements with spaces on the outer level are grouped with $\langle\}$ ．
－A key－value list whose keys are arbitrary strings（but usually nominative－case noun phrases）and whose values are data．Each key is wrapped inside the $\langle 3\}\rangle$ numquote， followed by the corresponding value inside the $\langle 4\}\rangle$ numquote．The elements are col－ lectively wrapped inside the $\langle 2\}\rangle$ numquote．

A datum that is a list or a key－value list is called a compound datum．
Arbitrary strings can be contained inside a datum by casting them into nouns using a direct quotative（section 12．12）particle．Alternatively，the particle 〈neppo〉 before a list or key－ value list applies the quotative to each element of a list or to each value of a key－value list．In this case，the outer quotation marks may be omitted．

A datum by itself can be used as a sICP to convey the information contained therein．It can also be cast into a noun using a zero genitive construct，involving the noun 〈manveo〉 datum immediately followed by the datum．This noun can be replaced with a more specific term that describes the referent of the datum．

Chapter 10

Information structure

Narâp Crîp marks the topic and the focus using prosody and word order．In particular，the topic comes at the beginning of an independent clause phrase（after any headps）．In contrast， the focus usually occurs near its end，immediately before the possibly implicit verb．However， an interrogative NP as a focus may be fronted instead of backed，as may an NP that acts as an answer to a question．

Prosodically，the topic is marked with a lower and less varied pitch range，while the focus is marked with sentence－level stress on its last stressed syllable．

10．1 The additive clitic 〈＝＇moc〉

The clitic 〈＝＇moc〉 can be translated to the Japanese particle～も or to the English words also or even．It can be applied to many different constituents：
－noun phrases
－attributive predicate phrases（verb participles，adverbial or adnominal relationals）
－the so－particle \langle so〉，changing the meaning to even if
（10）ondelt＇moc cerit＇pe corðen teha．

$$
\begin{array}{lll}
\text { ond-elt='moc } & \text { cer-it='pe } & \text { corð-en } \\
\text { now-LOC.DI=also } & \text { live-INF=POss. } 1 & \text { certainty-ACC.DI } \\
\text { cene_of.3sG.PRES.IPFV }
\end{array}
$$

（11）celmas vrele so＇moc le nemirin cengrit garasle．
celm－as vrel－e so＝＇moc le nem－irin cengr－it gar－as－le．
window－nom．sG thick－3sG if＝also IMP apple－ACc．pl throw－INF refrain－2SG－PAST
Even if the window is thick，don＇t throw apples at it．
$\langle=$＇moc〉 is also used to attach significance to its antecedent：
（12）sâna gjorłeve varop＇moc rille merte．
sân－a gljort－eve var－ob＝＇moc rille metr－te． bear－Nom．sG shout－INF．Loc life－dAt．di＝also on＿behalf＿of run－1sG．PASt．pFv

When the bear roared，I ran for as much as my life．

When 〈＝＇moc〉 is used on the subject of 〈telit〉 not exist，then the existence of the subject is not presupposed．［TODO：more］
nemir mina＇moc ceła．

```
nem-ir mina='moc ceta.
apple-NOM.SG one.NOM.CEL=also not_exist.3sG
```

There are no apples．

When the 〈＝＇moc〉 is attached to a noun or pronoun in the generic number other than a third－or sixth－declension noun in the nominative，accusative，dative，or genitive case，that noun takes the direct number instead，and all modifiers to that noun change in number to reflect this．This change，however，does not apply to verbal affixes that agree in number with the noun in question．
（14）eši nôro tano＇moc mervu．

eši	nôr－o	tan－o＝＇moc
here．Loc．DI	merv－ull－REL．NOM，NOM．PL	bird－NOM．DI＝also large－3GC

Here，even the small birds are large．

10．2 Marking exhaustivity

There is no clitic akin to 〈＝＇moc〉 for exhaustive constituents．Instead，the sentence is restruc－ tured to equate the exhaustant with a noun phrase involving 〈šino〉：

> ceripo arantil circbîve mîr anljar noršidir šinos cenpal.
cer－ibo arant－il circpîv－e mîr anlj－ar
remain－REL．NOM，DAT．CEL long＿time－GEN．DI battle－dAT．SG after injure－REL．ACC，NOM．HUM
noršid－ir šin－os cens－pal．
warrior－NOM．SG all－DAT．SG equal－3sG．PAST．IPFV
After the long battle，all who survived was the injured warrior．
Or：After the long battle，only the injured warrior survived．

Other uses of only can be translated into Narâb Crîp using other constructions：
（16）lê nemirin m•ênčilt＇pe tecto entan \hbar helilt＇ve mârit folca．

```
le nem-irin m·ênč-ilt='pe tecto ent-an
this.CEL apple-ACC eat-INF.DAT.IND=POSs.1 before that_thing.CEl-ACC.SG
    \hbarel-ilt='ve mâr-it folc-a.
    do_this-INF.DAT.IND=POSS.2 wait-INF intend_to-1Sg
```

I will wait until you eat that apple before I eat this one．
Or：Only when you eat that apple will I eat this one．
For the use of only to mean sole or unique，the numeral 〈mina〉 one is used with the dis－ tinctness clitic $\langle=$＇ot \rangle ．For the use of only to mean no more than，the bounding clitic 〈＝＇ocpaf〉 is used．

Part IV

Morphology

This part first describes the morphological framework and notation for describing Narâb Crî̀. It then describes each part of speech.

Chapter 11

Overview

Inflected forms of a word are built from two or more components, which include constants and variables. Constants stay the same within a given form of a given paradigm, regardless of the noun within that paradigm to be declined, and are notated using usual Narâb Crîb orthography. Variables depend on the noun being declined and can be divided into stems, themes, and rolls (Section 11.1).

A stem, in a way, is one of the essences of a word. Each inflected form of a word contains exactly one instance of a stem. In most cases, a stem consists of one or more syllables followed by an onset that does not contain a lenited consonant, but it can otherwise be arbitrary. In our notation, stems are denoted using capital Latin letters.

A theme is a variable that is short (almost always one letter long). Unlike stems, themes are limited to a predefined number of options. Themes in noun paradigms can be classified into thematic consonants and thematic vowels. In our notation, themes are denoted using capital Greek letters.

Each regular lexical entry has a set of PRINCIPAL COMPONENTS, which are the set of components needed to determine all of its inflected forms. The principal parts are a set of inflected forms of the entry that collectively give all of its principal components. The principal components of an entry include all of its stems and themes but no rolls, but in practice, some principal parts might be included solely for containing rolls that are otherwise inconvenient to derive.

A theme or a roll may receive a transformation, which is a function from themes to themes or from rolls to rolls. In our notation, transformations are shown in superscript to the right of the variable to be transformed. The result of a transformation is sometimes called a derivative.

The following basic transformations are defined:

- λ / μ : Replace the vowels in λ with the corresponding ones in μ.
- ${ }^{\lambda \times \mu}$: Apply an exchange transformation on a vowel: $\lambda \rightarrow \mu ; \mu \rightarrow \lambda$.
- ${ }^{\lambda / \mu}$: Replace this vowel with μ when the previous vowel (if any) is λ.
- ${ }^{\sim}$: Apply the transformation σ over both normal and hatted vowels.
- ${ }^{\sigma \cdot \tau}$: Apply the transformations σ and τ, in that order.

Other transformations can be expressed in terms of these:

- $\pi={ }^{\sim} \mathrm{aoe} / \mathrm{oei}$
- $\gamma=\sim$ aoei/eeie
- ${ }^{\lambda}=\sim$ ii/ae
- ${ }^{+}={ }^{\sim} \mathrm{o} / \mathrm{a}$
- ${ }^{\kappa}={ }^{\sim} / \mathrm{e}$
- ${ }^{\tau}={ }^{\sim \mathrm{oi} / \mathrm{ee}}$
- ${ }^{\varphi}={ }^{\sim \mathrm{a} / \mathrm{ea}}$
- $\psi={ }^{\sim a} /$ io
- $\eta=$ aeio/âê̂̂ô

Additionally, inflection often uses stem fusion (Section 6.3), which is notated by a superscript of either the fusion consonant or ε.

When the inflected form is given, the concatenation operator is understood to be inserted between each variable and its neighboring components. The type of each component will usually be clear from the context.

11.1 Rolls

Like themes, a roll is a short variable, but a roll is dependent on the letter sum of one of the word's inflected forms. In our notation, rolls are denoted using die faces: \square ('ace'), ('deuce'), ('trey'), 回 ('cater'), and ('cinque'). (Fortunately, we've yet to find a need for a sice.)

A shorthand is used to specify the value of a roll. The notation $\llbracket x_{0} x_{1} \ldots x_{n-1} \rrbracket « y$ is used to mean that the letter sum of y should be taken modulo n and used as an index into the list. Sometimes, this will be followed by 'increment until' or 'decrement until' followed by a condition; in this case, the index should be incremented or decremented (wrapping around if necessary) until the condition holds.

For instance, $\square=\llbracket e$ a i a i e \rrbracket « NOM.DI means that the letter sum of the nominative direct form of a noun should be calculated. If this is $0,6,12,18$, or so on, then \square is $\llbracket \mathrm{e} \rrbracket$; if it is 1,7 , 13,19 , or so on, then \square is $\llbracket a \rrbracket$; and so forth.

11.2 Phi consonants

The phi consonant of a stem X , denoted by Φ_{X}, is a consonant used in some generic forms. It can be either $\llbracket f \rrbracket$ and $\llbracket \downarrow \rrbracket$ according to the following rules:

1. If the final onset of X is not preceded by $\llbracket-1 \rrbracket$ or $\llbracket \ddagger \rrbracket$, and that onset contains any consonants whose base letter is any of $\llbracket \mathrm{pfv} \mathrm{mgd}\rceil \hbar \rrbracket$, then Φ_{X} is $\llbracket 1 \rrbracket$.
2. If any onset or coda in Φ_{X} other than the final onset contains any consonants whose base letter is any of $\llbracket \mathrm{p} \mathrm{fv} \mathrm{m} \rrbracket$, then Φ_{X} is $\llbracket 1 \rrbracket$.
3. Otherwise, Φ_{X} is $\llbracket \mathrm{f} \rrbracket$.

11．3 Mutations

Narâp Crîb has two kinds of initial mutations：LENITION and ECLIPSIs．Neither kind of mutation has any effect on plosive－fricative onsets or any of $\llbracket \mathrm{rln} \eta \hbar \rrbracket$ ．

Lenition tends to turn plosives into fricatives and is indicated with a middle dot $\llbracket \rrbracket \rrbracket$ after the consonant affected．In particular，it affects $\llbracket \mathrm{ptd}$ č g mfv Ø \rrbracket ．（See Section 7.1 for pronunciation details．）Partial lenition does not affect any of $\llbracket f \mathrm{v} \oslash \rrbracket$ ；that is，it does not lenite consonants that would become silent．Unless otherwise qualified，lenition refers to total lenition，which affects $\llbracket f \mathrm{v}$ Ø】．

In a word containing $\llbracket \& \rrbracket$ ，both instances of the reduplicated prefix are lenited．For exam－ ple，〈\＆d•enfo〉 can be pronounced as［ðeðenfo］but not as＊［ðedenfo］．

Lenition occurs in the following environments：
－On the stem in abessive forms of third－or sixth－declension nouns
－On a noun modified by 〈šinen〉 or 〈nemen〉 when used as determiners，if that noun is not a form of 〈ðên〉
－Partially，on a noun modified by $\langle r u f\rangle$ not immediately following it
－Partially，on a noun modified by \langle mê \rangle immediately preceding it
－On the first－person dual or plural present perfective forms of a resinous verb
－Partially，on the first－and second－person generic past imperfective forms of a resinous verb
－On a terrestrial noun modified by a participle－form verb belonging to a Type I genus
－To a dative－case nominalized verb phrase as explained in Section 13.8
－Partially，on a verb when receiving the comparative prefixes $\llbracket m i r-\rrbracket$ or $\llbracket 1 a-\rrbracket$

- On a classifier attached to the numeral 〈ces〉 or any numeral ending in 〈ћas〉 or 〈srepas〉
- On the second item of a compound noun，if it is neither terrestrial nor a form of 〈vês〉
－On a verb with the cessative prefix $\llbracket c a r-\rrbracket$ or the terminative prefix $\llbracket e r-\rrbracket$
Eclipsis tends to add voice to voiceless consonants and change voiced stops into nasals．It is indicated by prefixing a consonant：$\llbracket \mathrm{tdc} \mathrm{g} \mathrm{fb} \ddagger \rrbracket$ become $\llbracket \mathrm{dt} \mathrm{nd} \mathrm{gc} \mathrm{ng} \mathrm{vf}$ ðp ll】，respectively． $\llbracket p \rrbracket$ becomes 【vp】 before any of $\llbracket \mathrm{i}$ e u î ê】 and $\llbracket \mathrm{mp} \rrbracket$ elsewhere．If a word starts with a vowel， then it is eclipsed by prefixing $\llbracket g \rrbracket$ ．

In a word containing 【\＆】，only the first instance of the reduplicated prefix is eclipsed．For example，$\langle n \& d e n f i n\rangle$ can be pronounced as［nedenfin］but not as＊［nenenfin］．

Eclipsis occurs in the following environments：
－On the genitive dual，plural，and singulative forms of nouns

- On a noun modified by 〈lê〉 or 〈tề immediately preceding it
- On a noun modified by 〈dân〉
- On a finite form of a vitreous verb or relational with perfective aspect
- On a finite form of a resinous verb with perfective aspect, unless it is a present-tense form and either a first-person dual or plural form or a first- or second-person generic form
- To a locative, instrumental, or abessive-case nominalized verb phrase that is not an object of a modifying relational, as explained in Section 13.8
- On a short numeral modified by 〈cepe〉

Lenition can happen on any syllabic onset of a word, but eclipsis is limited to word-initial positions.

In this documentation, lenition is sometimes marked with an empty circle \circ, and eclipsis with an filled circle \bullet. Partial lenition is marked with an empty triangle Δ.

Chapter 12

Nouns

In Narâp Crîb, each noun is in one of three noun classes: Celestial, terrestrial, and human. The class of a given noun is fixed. The unmarked gender is celestial, in that noun phrases are assumed to be celestial unless otherwise specified, and the celestial gender is used for an object whose gender is otherwise unknown (such as in participles of headless relative clauses).

Nouns are also declined for number and case. There are five numbers: direct, dual, plural, singulative, and generic. No noun can decline for all five numbers; instead, each noun is limited to a subset of these according to its clareb:

- Singular nouns allow the direct (as a singular), the dual, the plural, and the generic.
- Collective nouns allow the direct (as a collective), the singulative, and the generic. The following nouns tend to be collective:
- Objects that tend to be found in groups
- Some plants, including all trees and flowers
- Small animals
- Diminuitive nouns
- Mass nouns allow only the direct and the generic.

Generic number is used to mean " X in general" or " X as a concept". It is used on noun phrases that do not refer to a specific referent or referents. Contrast the following, for instance:

- Love is a complex emotion. - mentions love in general, so this would use the generic
- Alice's love for Bob grew every day. - particular instance of love, so this would use the singular
- Fish eat flowers. - general truth, so "fish" would be in the generic and "flowers" would be in the generic
- The fish eat flowers. - mentions a particular group of fish, so "fish" would be in the plural, but if the sentence indicates a habitual action, "flowers" would be in the generic
- A fish will usually eat about 200 flowers during its lifespan. - "fish" is generic, as this sentence is not referring to a particular fish but rather an idealized individual reflecting the average. "Flowers" is plural and "lifespan" is singular because they are definite relative to the subject, even though the subject is generic.
- The fish are eating flowers. - both "fish" and "flowers" would be in the plural
- The sun shines. - there's only one sun as far as we can tell, but this is also a general truth, so would "sun" be in the singular or the generic?
- The sun is shining. - "sun" would definitely be in the singular here
- Charlie fishes for trout every week. - "Charlie" is singular; "trout" and "week" are generic
- Charlie is fishing in that river. - uses the singular
- All ravens are black. - also a general truth, so "raven" would be in the generic number. A speaker could reasonably say this, even if they have not seen every raven in existence.
- All of the ravens landed on the fence. - "all" is used with a partitive meaning, referring to every individual in some contextually relevant set of ravens, and the statement is made from observation, so this sentence would use the singular (as customary with a noun modified by "all" or "any")
- I abhor strawberries. - "strawberries" would be in the generic, as the speaker is claiming to dislike strawberries in general
- I abhor these strawberries because they're too sour. - "strawberries" would be in the plural here, referring to some strawberries in particular
- I'm looking for the manager, whoever that may be. - although the speaker does not know who the manager is, they expect that there exists someone who is the manager, so "manager" would be in the singular
- Think of a word, any word. - again, the speaker does not know which word the listener chose, but they expect that a particular word will be chosen, so "word" is in the singular
- Everyone knows someone. - This sentence has two interpretations in English. In Narâp Crîp, these two interpretations would yield different sentences.
- There exists an individual y such that for all individuals x, x knows y. - "Someone" (the y here) would be singular. "Everyone" (the x) would also be singular if the statement is based on observation.
- For all individuals x, there exists an individual y such that x knows y. - Assuming again that the statement is based on observation, "everyone" and "someone" would both be singular here as well (there is exactly one "someone" for each individual of "everyone").

When a noun in the genitive case is used for description, it usually takes the direct number, not the generic.

In areas other than noun declension, Narâb Crîp has the singular, dual, plural, and generic numbers. This results in a bijective mapping for singular nouns. For collective nouns, the collective is mapped to the plural, and the singulative to the singular; for mass nouns, the direct number is mapped to the singular. In all cases, the generic number is mapped to itself.

Narâb Crîb has eight cases (Table 12.1). The nominative, accusative, dative, and genitive cases are considered core cases. In general, the first three of these are used for arguments to verbs, the genitive case for adnominal adjuncts, and the other four cases for adnominal or adverbial adjuncts.

Name	Use
Nominative	The subject of the clause. The citation form of a noun is the nominative singular.
Accusative	The "direct object" of the clause.
Dative	The "indirect object" of the clause. Also used as a vocative.
Genitive	Shows such things as possession, composition, description, or apposition.
Locative	Indicates the location or time of an object or an action: at X, on X, in X. On a nominalized verb, this case can be translated as when, where, or as long as.
Instrumental	Indicates the comitative or the instrumental: with X.
Abessive	The negation of the instrumental: without X. In the dual number, with only one X. like X in behavior. On a nominalized verb, such that, as though, or to the
Semblative	point that (although 〈dôm〉is used more often for the last sense). Not used for semblance in appearance.

Table 12.1: The cases of Narâp Crîp.

12.1 Declensions

Noun declensions are divided into six paradigms. There are three broad categories of noun paradigms:

- Celestial (I and II): contain mainly celestial nouns and have suffixed instrumental and abessive forms
- Terrestrial (III): contain mainly terrestrial nouns and have circumfixed instrumental and abessive forms. Lack any thematic vowel.
- Stochastic (IV and V): the lemma has no suffix in the sense that I - III do; these paradigms employ rolls for some of the forms.

The sixth declension is considered a hybrid between the celestial and terrestrial categories. Additionally, the second declension has penultimate and ultimate variants.

Any declension paradigm can contain words of the human class, since names can in theory be derived from any content noun.

In all regular paradigms, genitive dual, plural, and singulative forms are eclipsed. Indeclinable parts of compound nouns do not have this behavior. Most irregular nouns do, although there are exceptions.

Most nouns have at least N, L, and S stems. The N stem is used for the nominative, accusative, genitive, and dative cases; the L stem is used for the locative, instrumental, and abessive; and the S stem is used for the semblative. The second penultimate declension additionally has a G stem, while third-declension $\llbracket-\mathrm{el} \rrbracket$ nouns have an A stem on top. The sixth declension adds I and I' stems. In contrast, the fifth declension lacks an L stem. In paradigms that have one, the L stem is almost always distinct from the N stem because some forms differ only in the use of an N or an L stem.

Themes in noun paradigms can be classified into THEMATIC vowels and thematic consonants. The primary thematic vowel (where it exists) is denoted by $\llbracket \Theta \rrbracket$, and the locative
thematic vowel is denoted by $\llbracket \Lambda \rrbracket$ ．In paradigms that have one，the thematic consonant is denoted by $\llbracket \Sigma \rrbracket$ ．

In addition，all paradigms use one or two phi consonants：Φ_{L} and，for some paradigms，Φ_{N} ．
The first，second，and third declensions admit words of different ending types，which have different rules for certain forms．Each paradigm is first given for the most representative end－ ing type，followed by deviations for other endings．

12．2 The first declension

Guidelines：
－Θ can be $\llbracket a \rrbracket$ ，$\llbracket e \rrbracket$ ，or $\llbracket \mathrm{o} \rrbracket$ ．
－Λ can be 【a】，«e】，or 【i】．
－L must be different from N ，unless Θ is $\llbracket 0 \rrbracket$ and Λ is $\llbracket \mathrm{e} \rrbracket$ ．The most common difference is to change the final vowel of N ．
－S may be the same as N ，but the most common difference is to change the final conso－ nants of N （especially changing voiceless coronals to voiced coronals and $\llbracket r \rrbracket$ to $\llbracket 1 \rrbracket)$ ．
－N cannot end in $\llbracket-n n \rrbracket$ if Θ is $\llbracket e \rrbracket$ ；otherwise，N^{n} is the same as N ．

Case \ Number	Direct	Dual	Plural	Singulative	Generic
Nominative	$\mathrm{N} \Theta^{\text {d }}$	$\mathrm{N} \Theta \mathrm{c}$	$\mathrm{N} \Theta^{\pi \Delta}$	$\mathrm{NE}^{\gamma} \mathrm{l}^{\Delta}$	$\mathrm{N} \Theta^{+} \Phi_{\mathrm{N}}$
Accusative	$\mathrm{N} \Theta \mathrm{n}^{\Delta}$	Nôr	$\mathrm{N} \Theta \mathrm{r}$	$\mathrm{N}^{\mathrm{n}} \Theta^{\mathrm{Y}} \mathrm{s}^{\text {a }}$	$\mathrm{Ne} \Phi_{\mathrm{N}} \mathrm{en}$
Dative	$\mathrm{N} \Theta \mathrm{s}^{\text {a }}$	$\mathrm{N}^{\mathrm{t}} \Theta \mathrm{s}$	$N \Theta^{+} \mathrm{i}^{\text {d }}$	$\mathrm{N}^{\mathrm{n}} \Theta^{\mathrm{r}} \mathrm{b}$	$\mathrm{N} \Theta^{+} \Phi_{\mathrm{N}} \mathrm{es}$
Genitive	$\mathrm{N}^{\text {Y }}{ }^{\prime}$	$\mathrm{N}^{\dagger} \Theta^{\gamma} \mathrm{n}$	Nin	$\mathrm{N}^{\mathrm{n}} \Theta^{\mathbf{r}} \mathrm{n}$	$\mathrm{N}^{\mathrm{n}} \mathrm{e} \Phi_{\mathrm{N}}$
Locative	L ＾s	L ¢c	L $\Lambda^{\text {s }} \mathrm{s}$	L $\Lambda^{\gamma} \mathrm{ns}$	$\operatorname{Le}^{\text {L }}$ L
Instrumental	Leca	Lecca	Lica ${ }^{1}$	Linca ${ }^{1}$	$\mathrm{Le} \Phi_{\mathrm{L}} \mathrm{ca}$
Abessive	Lepa	Lecpa	Lipa ${ }^{1}$	Linpa ${ }^{1}$	Le $\Phi_{\text {L }} \mathrm{pa}$
Semblative	Sit	Set		$\operatorname{Sict} \Theta$	Sicp

Table 12．2：Declensions for first－declension－V nouns．
${ }^{1}$ 【i】 in the suffix becomes $\llbracket \mathrm{e} \rrbracket$ after the onsets $\llbracket t-\rrbracket, \llbracket d-\rrbracket, \llbracket \mathrm{s}-\rrbracket, \llbracket \mathrm{p}-\rrbracket$ ，$\llbracket \mathrm{\chi}-\rrbracket$ ，$\llbracket \mathrm{tf}-\rrbracket$ ，or $\llbracket \mathrm{dv}-\rrbracket$ ，as well as any onsets that end with $\llbracket 1 \rrbracket$ ．

Form	【- $\Theta \rrbracket$	【- $\boldsymbol{- s} \rrbracket$	$\llbracket-\Theta^{\eta} \mathbf{p} \rrbracket$	$\llbracket-\boldsymbol{\Theta n} \rrbracket$
Allowed Θ	$\mathrm{a}, \mathrm{e}, \mathrm{o}$	a, e	a, e	a, e
Nominative direct	$\mathrm{N} \Theta$	$\mathrm{N} \Theta \mathrm{s}$	$N \Theta^{\eta} \mathrm{p}$	$\mathrm{N} \Theta \mathrm{n}$
Nominative plural	$\mathrm{N} \Theta^{\pi}$	$N \Theta^{\gamma}{ }^{\text {s }}$	$\mathrm{N} \Theta^{\pi \cdot \eta} \mathrm{p}$	$\mathrm{N} \Theta^{\pi}$
Nominative singulative	$N \Theta^{\gamma} 1$	$\mathrm{N}^{\mathrm{n}} \Theta^{\gamma} \mathrm{S}$	$\mathrm{N}^{\mathrm{n}} \Theta^{\gamma \cdot \eta} \mathrm{p}$	$\mathrm{N}^{\mathrm{n}} \Theta^{\gamma} 1$
Accusative direct	$\mathrm{N} \Theta \mathrm{n}$	$N \Theta^{\eta}{ }^{n}$	$N \Theta^{\eta}{ }^{n}$	$\mathrm{N} \Theta$ nen
Accusative singulative	$\mathrm{N}^{\mathrm{n}} \Theta^{\gamma} \mathrm{S}$	$\mathrm{N}^{\mathrm{n}} \mathrm{je}$	$\mathrm{N}^{\mathrm{n}} \mathrm{je}$	$\mathrm{N}^{\mathrm{n}} \Theta^{\gamma} \mathrm{S}$
Dative direct	$\mathrm{N} \Theta \mathrm{s}$	No	$\mathrm{N} \Theta \mathrm{s}$	$\mathrm{N} \Theta \mathrm{s}$
Dative plural	$\mathrm{N} \Theta^{+} \mathrm{i}$	$\mathrm{N} \Theta^{+} \mathrm{ri}$	$\mathrm{N} \Theta^{+}$si	$\mathrm{N} \Theta^{+} \mathrm{ri}$

Table 12.3: Variable declensions for first-declension nouns.

Only a handful of $\llbracket-\Theta n \rrbracket$ nouns exist, and most such nouns are functional.

12.3 The second declension (penultimate)

Guidelines:

- Λ can be either $\llbracket \mathrm{e} \rrbracket$ or $\llbracket \mathrm{i} \rrbracket$.
- Has a separate G stem, which can be same as or different from N .
- L can potentially be the same as N but is usually different from it. The difference is usually more substantial than a change in the final vowel of the stem.
- S may be the same as N , but the most common difference is to change the final consonants of N (especially changing voiceless coronals to voiced coronals and $\llbracket \mathrm{r} \rrbracket$ to $\llbracket 1 \rrbracket)$.

Case \ Number	Direct	Dual	Plural	Singulative	Generic
Nominative	$N \Theta \Sigma^{\Delta}$	Njor	$\mathrm{Na} \Sigma^{\Delta}$	$\mathrm{N}^{\mathrm{n}} \Theta^{\lambda} \mathrm{n}$	$\mathrm{N}^{\mathrm{b}} \Theta^{\tau} \mathrm{s}$
Accusative	$\mathrm{N}^{\mathrm{n}} \mathrm{e}^{\Delta}$	N^{n} ec	Neri	Neћin	$\mathrm{N}^{\mathrm{b}} \Theta^{\tau} \mathrm{ns}$
Dative	$\mathrm{N}^{\mathrm{t}} \mathrm{s}$	Necp	Nerp	Nerin	$\mathrm{N}^{\mathrm{p}} \Theta^{\tau} \mathrm{p}$
Genitive	Gen ${ }^{\text {a }}$	Gjôr ${ }^{\text {a }}$	Gep^{Δ}	$\mathrm{G}^{\mathrm{n}} \mathrm{es}^{\text {d }}$	$\mathrm{N}^{\mathrm{p}} \mathrm{\Theta}^{\boldsymbol{\tau}} \mathrm{st}$
Locative	L^lt	L $\Lambda 1+$ ¢ c	$\mathrm{G} \Lambda^{\text {ex }} \mathrm{l}$ lt	GAlten	$\mathrm{L} \Lambda \Phi_{\mathrm{L}}$
Instrumental	LAlca	L^lhac	L^lco	LAlcen	$\mathrm{L} \Lambda / \mathrm{lca} \Phi_{\mathrm{L}}$
Abessive	LAlpa	LSlbac	L^lpo	LAlpen	$\mathrm{L} \Lambda 1 \mathrm{lba} \Phi_{\mathrm{L}}$
Semblative	Sit	Set		$\operatorname{Sict} \Theta$	Sicp

Table 12.4: Declensions for $\llbracket-\mathrm{in} \rrbracket$ and $\llbracket-\mathrm{is} \rrbracket$ nouns.

Form	$\llbracket-\mathrm{in} \rrbracket, \llbracket-\mathrm{is} \rrbracket$	$\llbracket-\Theta^{\eta} \mathbf{r} \rrbracket$
Allowed Θ	i	e, i
Nominative direct	$\mathrm{N} \Theta \Sigma$	$\mathrm{N} \Theta^{\eta} \Sigma$
Nominative plural	$\mathrm{Na} \Sigma$	$\mathrm{Ni} \Sigma$
Accusative direct	$\mathrm{N}^{\mathrm{n}} \mathrm{e}$	$\mathrm{N}^{\mathrm{n}} \mathrm{el}$
Genitive direct	Gen	Gil
Genitive dual	$\mathrm{Gjôr}$	$\mathrm{G}^{\mathrm{t}} \mathrm{il}$
Genitive plural	Gep	$\mathrm{Gevi}^{\mathrm{n}}$
Genitive singulative	$\mathrm{G}^{\mathrm{n}} \mathrm{e} \mathrm{s}$	$\mathrm{G}^{\mathrm{n}} \mathrm{il}$

Table 12．5：Variable declensions for second－declension penultimate nouns．

12．4 The second declension（ultimate）

Guidelines：
－As in IIp，Λ can be either 【e】 or 【i】．
－Does not have a separate G stem．
－L can potentially be the same as N but is usually different from it．The difference is usually more substantial than a change in the final vowel of the stem．
－ S may be the same as N ，but the most common difference is to change the final conso－ nants of N （especially changing voiceless coronals to voiced coronals and $\llbracket \mathrm{r} \rrbracket$ to $\llbracket 1 \rrbracket)$ ．

Case \backslash Number	Direct	Dual	Plural	Singulative	Generic
Nominative	$\mathrm{N} \Theta \Sigma$	$\mathrm{N} \Theta \mathrm{c}$	$\mathrm{N}^{\gamma} \mathrm{r}^{\text {d }}$	$\mathrm{N}^{\mathrm{n}} \Theta^{\lambda} \mathrm{n}$	$\mathrm{N}^{\mathrm{b}} \Theta^{\tau} \mathrm{s}$
Accusative	N Θ rin	$\mathrm{Nj} \Theta^{\mathrm{k} \cdot{ }^{\prime} \mathrm{r}}$	Neri	$\mathrm{N}^{\mathrm{n}} \Theta \mathrm{rb}$	$\mathrm{N}^{\mathrm{b}} \Theta^{\tau} \mathrm{ns}$
Dative	N ¢ls	$\mathrm{N}^{\mathrm{t}} \mathrm{el}$	Nari	$\mathrm{N}^{\mathrm{n}} \Theta \mathrm{ls}$	$\mathrm{N}^{\mathrm{p}} \Theta^{\tau} \mathrm{p}$
Genitive	$\mathrm{N}^{\text { }} \mathrm{i}$	$\mathrm{N}^{\tau}{ }^{\text {c }} \mathrm{ci}$	$\mathrm{Ne}^{\tau} \mathrm{vi}$	$\mathrm{N} \Theta^{\tau}$ ¢in	$\mathrm{N}^{\mathrm{p}} \boldsymbol{\Theta}^{\tau} \mathrm{st}$
Locative	LNlt	$\mathrm{L} \Lambda \mathrm{lt}$ ¢c	$\mathrm{N} \Lambda^{\text {exi }} \mathrm{l}$	NAlten	$\mathrm{L} \Lambda \Phi_{\mathrm{L}}$
Instrumental	LNlca	LAlhac	L＾lco	LAlcen	$\mathrm{L} \Lambda 1 \mathrm{lca} \Phi_{\mathrm{L}}$
Abessive	LNlpa	LAlpac	LAlpo	LAlpen	$\mathrm{L} \Lambda \mathbf{l p a} \Phi_{\mathrm{L}}$
Semblative	Sit	Set		Sict Θ	Sicp

Table 12．6：Declensions for vowel $+\llbracket r \rrbracket$ nouns．

Form	$\llbracket-\Theta r \rrbracket$	$\llbracket-\Theta l \rrbracket$	$\llbracket-\Theta \mathbf{p} \rrbracket$	$\llbracket-\Theta \mathbf{r} \rrbracket \rrbracket$
Allowed $\boldsymbol{\Theta}$	a，e，i	a，i，o	a，e	a，e
Nominative plural	$\mathrm{N}^{\gamma} \mathrm{r}$	$\mathrm{N}^{\gamma} \mathrm{r}$	No Σ	No Σ

Table 12．7：Variable declensions for second－declension ultimate nouns．

12．5 The third declension

Guidelines：
－There is no thematic vowel．
－L must be different from N ．The most common difference is to change the final vowel of N ．
－S may be the same as N ，but the most common difference is to change the final conso－ nants of N（especially changing voiceless coronals to voiced coronals and $\llbracket r \rrbracket$ to $\llbracket 1 \rrbracket)$ ．In any case，it must be distinct from L ．

Case \Number	Direct	Dual	Plural	Singulative	Generic
Nominative	Nos ${ }^{\text {a }}$	Noc	Nor ${ }^{\text {a }}$	Noren ${ }^{\text {a }}$	Nu
Accusative	Non ${ }^{\text {a }}$	$\mathrm{N}^{\text {ton }}{ }^{\text {a }}$	$\mathrm{N}^{\mathrm{b}} \mathrm{on}^{\Delta}$	Nelt	Nan
Dative	Nop	N^{t} op	Nasor	N^{n} es	Nas
Genitive	Nel ${ }^{1}$	$\mathrm{N}^{\mathrm{t}} \mathrm{el}$	Njel	$\mathrm{N}^{\mathrm{n}} \mathrm{el}$	$\mathrm{N}^{\mathrm{n}} \mathrm{e}$
Locative	Los	Locp	Lor	Loren	$\operatorname{Le}^{\text {¢ }}$ L
Instrumental	cjaLos $^{\text {a }}$	cjaLocp ${ }^{\text {a }}$	cjaLor	cjaLolt	cjaLe $\Phi_{\text {L }}$
Abessive	pjaoLos ${ }^{\text {a }}$	bjaoLocp ${ }^{\text {a }}$	bjaoLor	bjaoLolt	bjaoLe $\Phi_{\text {L }}$
Semblative	Sot	Soctos	Set	Sefi	Socp

Table 12．8：Declensions for third－declension－os nouns．${ }^{1}$ See below．

Form	【－os】	【－on】	【－or】
Nominative default	Nos	Non	Nor
Nominative plural	Nor	Nor	Nosôr
Nominative singulative	Noren	Noren	Nons
Accusative default	Non	Nanon	Non
Accusative dual	N^{t} on	Nanor	N^{t} on
Accusative plural	N^{p} on	Nanor	N^{p} on
Instrumental default	cjaLos	cjaLon	cjaLor
Instrumental dual	cjaLocp	cjaLoc	cjaLoc
Abessive default	bjaoLos	bjaoLon	bja○Lor
Abessive dual	bjaoLocp	bja○Loc	bja○Loc

Table 12．9：Variable declensions for third－declension nouns．

【－el】 nouns have additional A and G stems and thus have their own declension：

Case \Number	Direct	Dual	Plural	Singulative	Generic
Nominative	Nel	Noc	Nor	Nons	Aul
Accusative	Aen	A^{t} en	Aon	Nelt	Aan
Dative	Aop	$\mathrm{N}^{\text {top }}$	Aasor	N^{n} es	Aas
Genitive	Gel ${ }^{1}$	$\mathrm{G}^{\mathrm{t}} \mathrm{el}$	Gol	$\mathrm{G}^{\mathrm{n}} \mathrm{el}$	$A^{\mathrm{n}} \mathrm{e}$
Locative	Los	Locb	Lor	Loren	$\underline{L e} \Phi_{\text {L }}$
Instrumental	cjaLel	cjaLels	cjaLor	cjaLolt	${ }^{\text {cjaLe }}$ L $^{\text {L }}$
Abessive	bjaoLel	pja○Lels	bja○Lor	pja○Lolt	bja○Le $\Phi_{\text {L }}$
Semblative	Sot	Soctos	Set	Sełi	Socb

Table 12．10：Declensions for third－declension－el nouns．${ }^{1}$ See below．

In this case，the N and G stems must be distinct．
In the genitive singular，if the last bridge of N or G is $\llbracket 1 \rrbracket$ ，then the inflected form is Nlu or Glu，where the $\llbracket 1-\rrbracket$ onset becomes the preceding coda．If the stem otherwise ends with $\llbracket 1 \rrbracket$ ， then the inflected form is Nô or Gô．

If the N stem ends in $\llbracket \mathrm{i} \rrbracket$ ，then some forms are declined differently．Let N^{\prime} be the start－to－ onset assemblage resulting from removing the final $\llbracket i \rrbracket$ from N ．Then the declensions are as follows：

Case \Number	Direct	Dual	Plural	Singulative	Generic
Nominative	N＇ios ${ }^{\text {a }}$	N＇ice	$\mathrm{N}^{\prime} \mathrm{ia}^{\text {a }}$	N＇ien ${ }^{\text {a }}$	N＇iva
Accusative	N＇ion ${ }^{\text {a }}$	N＇eton ${ }^{\text {a }}$	N＇epon ${ }^{\text {a }}$	N＇ila	（ ${ }^{\prime}$＇ian）
Dative	N＇isa	N＇ista	N＇esor	N＇ines ${ }^{\text {a }}$	（N＇ias）
Genitive	N＇ina	N＇inta	N＇ide	（ N^{\prime} inel）	（N＇ine）

Table 12．11：Declensions for third－declension－ios nouns．The other cases are inflected as usual．

Form	\llbracket－ios	\llbracket－ion	\llbracket－ior \rrbracket
Nominative default	（N＇ios）	（N＇ion）	（N＇ior）
Nominative plural	N＇ia	N＇ia	N＇esôr
Nominative singulative	N＇ien	N＇ien	N＇ines
Accusative default	N＇ion	N＇enon	N＇ion
Accusative dual	N＇eton	N＇iap	N＇eton
Accusative plural	N＇epon	N＇iap	N＇epon
Dative singulative	N＇ines	N＇ines	N＇inep

Table 12．12：Variable declensions for third－declension nouns with N stems ending in 【i】．

In 【－iel】 nouns，only the nominative and dative forms are affected：

Case \backslash Number	Direct	Dual	Plural	Singulative	Generic
Nominative	N'iel $^{\prime}$	N'ice $^{\prime}$	N'ia $^{\prime}$	N'ines	Aul
Dative	Aop	$\mathrm{N}^{\prime t} e p$	Aasor	N'inep	Aas

Table 12.13: Declensions for third-declension -iel nouns.

12.6 The fourth declension

Guidelines:

- Θ is $\llbracket 0 \rrbracket$ for terrestrial nouns and $\llbracket a \rrbracket$ for celestial nouns. Naturally, it can be either for human nouns.
- Λ can be either $\llbracket a \rrbracket$ or $\llbracket \mathrm{e} \rrbracket$.
- Some vowels in the paradigm depend on the letter sum of a certain form modulo some integer:
$-\square=\llbracket e$ a i a i e】 « NOM.DI if $\Theta=\llbracket a \rrbracket$; otherwise $\llbracket 0 \rrbracket$
$-\square=\llbracket$ iiaiei \rrbracket « NOM.DI if $\Theta=\llbracket \mathrm{a} \rrbracket$; otherwise $\llbracket \mathrm{e} \rrbracket$
- L must be different from N . This is a departure from paradigms 5 and 11 on the old system, as the final coda of the nominative direct is no longer mutated in certain forms. The easiest way to fix these two stems being the same is to change the final bridge of N .
- S may be the same as N , but the most common difference is to change the final consonants of N (especially changing voiceless coronals to voiced coronals and $\llbracket \mathrm{r} \rrbracket$ to $\llbracket 1 \rrbracket)$.

Case \ Number	Direct	Dual	Plural	Singulative	Generic
Nominative	N^{ε}	Nec	$\mathrm{N} \Theta \mathrm{r}$	$\mathrm{N} \mathrm{D}_{\mathrm{n}}$	$\mathrm{Na} \Phi_{\mathrm{N}}$
Accusative	$\mathrm{N} \cdot \mathrm{n}$	N^{t} 『n	Nas	$\mathrm{N} \square \mathrm{nb}$	$\mathrm{Na} \Phi_{\mathrm{N}} \mathrm{en}$
Dative	Ni^{1}	Nic	Nir	Nên	$\mathrm{Na} \Phi_{\mathrm{N}} \mathrm{es}$
Genitive	Na	Nac	No	Nân	$\mathrm{N}^{\mathrm{n}} \mathrm{e}_{\mathrm{N}}$
Locative	L Λ s	$\mathrm{L} \Lambda \mathrm{c}$	$\mathrm{L} \Lambda^{\pi}{ }^{\text {S }}$	L $\Lambda^{\gamma} \mathrm{ns}$	Le Φ_{L}
Instrumental	Leca	Lecca	Lica ${ }^{2}$	Linca ${ }^{2}$	Le $\Phi_{\mathrm{L}} \mathrm{ca}$
Abessive	Lepa	Lecpa	Lipa ${ }^{2}$	Linpa ${ }^{2}$	Le $\Phi_{\text {L }} \mathrm{pa}$
Semblative	Same as I (III) for $\Theta=\mathrm{a}$ (o)				

Table 12.14: Declensions for fourth-declension nouns.
${ }^{1}$ Nes if N ends in $\llbracket j \rrbracket$; otherwise Ne if the last vowel of N is $\llbracket i \rrbracket$ or $\llbracket \hat{1} \rrbracket$.
${ }^{2} \llbracket i \rrbracket$ in the suffix becomes $\llbracket \mathrm{e} \rrbracket$ after the onsets $\llbracket t-\rrbracket$, $\llbracket \mathrm{d}-\rrbracket$, $\llbracket \mathrm{s}-\rrbracket$, $\llbracket \mathrm{b}-\rrbracket$, $\llbracket \delta-\rrbracket$, $\llbracket \mathrm{tf}-\rrbracket$, or $\llbracket \mathrm{dv}-\rrbracket$, as well as any onsets that end with $\llbracket 1 \rrbracket$.

12．7 The fifth declension

Guidelines：
－This paradigm has only N and S stems，with no L stem．
－Θ is any nucleus．
－Σ is a（possibly empty）simple coda other than $\llbracket-\mathrm{c} \rrbracket$ or $\llbracket-\mathrm{t} \rrbracket$ ，with a transformation＊ （＇zhe＇）．
－Some variables in the paradigm depend on the letter sum of a certain form modulo some integer：

- $\square=\llbracket \mathrm{e}$ aiôuoîê â】« NOM．DI
- $\square=\llbracket \mathrm{o}$ ô ô o】《 NOM．GC
- $\square^{\bullet}=\llbracket$ i i e e】 $<$ NOM．DU
- $:=\llbracket \mathrm{g} \mathrm{dv}$ 《 ACC．DI，increment until $: \neq$ the last onset of N
- $\because=\llbracket$ e a i u a e o i jâ jê jô jê jâ o】«ACC．PL，increment until $\because \neq \Theta$
－ N is not necessraily a stem，as it is not required to have at least one full syllable．
－S may be the same as N ，but the most common difference is to change the final conso－ nants of N （especially changing voiceless coronals to voiced coronals and $\llbracket r \rrbracket$ to $\llbracket 1 \rrbracket)$ ．
－In this case，Φ_{L} is based on $\llbracket \mathrm{N}$ 园 $\Sigma^{*} \rrbracket$ ．

Case \ Number	Direct	Dual	Plural	Singulative	Generic
Nominative	N ${ }^{\text {c }}$	N^{\dagger} Q c^{1}	N『 Σ	$\left(\mathrm{N} \Theta \Sigma^{*}\right)^{\mathrm{t}} \mathrm{e}$	$N \Theta \Sigma^{*} u$
Accusative	$\mathrm{N} \Theta \Sigma^{*} \mathrm{Q}^{\text {n }}$	N $\Theta \Sigma^{*}$ jor	$\mathrm{N} \square \Sigma^{*} \dot{\text { d }}^{\mathrm{ex}} \mathrm{n}$	$\left(\mathrm{N} \Theta \Sigma^{\kappa}\right)^{\mathrm{t}} \mathrm{en}$	$\mathrm{N} \Theta \Sigma^{*} \mathrm{an}$
Dative	$\mathrm{N} \Theta \Sigma^{*} \mathrm{er}$	$\mathrm{N} \Theta$ Oa	$N \Theta \Sigma^{*} \mathrm{ir}$	$\left(\mathrm{N} \Theta \Sigma^{*}\right)^{\mathrm{t}} \mathrm{es}$	$\mathrm{N} \Theta \Sigma^{*} \mathrm{as}$
Genitive	$N \Theta \Sigma^{*}$ es	$N \Theta \Sigma^{*} e c$	$N \Theta \Sigma^{*}$ eris	$\left(\mathrm{N} \Theta \Sigma^{*}\right)^{\mathrm{t}} \mathrm{el}$	$N \Theta \Sigma^{*} e$
Locative	N 洨 ${ }^{\text {a }}$	N 园 $\Sigma^{*} \mathrm{ac}$	N 目 $\Sigma^{*}{ }_{0}$	N 洨 ${ }^{\text {en }} \mathrm{en}$	N 没 ${ }^{\text {a }} \Phi_{\mathrm{L}}$
Instrumental	N Σ^{*} eca	N Σ^{*} ehac	$\mathrm{N} \Sigma^{*}$ ego	N 园 Σ^{*} egen	$\mathrm{N} \Sigma^{*} \mathrm{eca} \Phi_{\mathrm{L}}$
Abessive	N 法 ${ }^{\text {e }}$ epa	N Σ^{*} epac	N 法 ${ }^{\text {e }}$ o		$\mathrm{N} \Sigma^{*}$ epa Φ_{L}
Semblative	Sot	Soctos	Set	Sełi	Socp

Table 12．15：Declensions for fifth－declension nouns．
${ }^{1} \mathrm{~N}$ t if N does not contain at least one full syllable

$\boldsymbol{\Sigma}$	$\boldsymbol{\Sigma}^{\boldsymbol{\kappa}}$
\varnothing	\hbar
s	r
r	r
n	np
p	s
rb	rs
cb	cs
l	f
f	m

Table 12.16: The ${ }^{*}$ transformation for the fifth declension.

12.8 The sixth declension

Guidelines:

- Θ can be $\llbracket a \rrbracket$, $\llbracket \mathrm{e} \rrbracket$, or $\llbracket i \rrbracket$.
- Λ can be 【a】 or $\llbracket e \rrbracket$.
- N cannot end with $\llbracket-\mathrm{nn}-\rrbracket$.
- L is usually different from N , but it does not need to be.
- This paradigm additionally has I and I' stems, which are usually similar to the L stem.
- S may be the same as N , but the most common difference is to change the final consonants of N (especially changing voiceless coronals to voiced coronals and $\llbracket \mathrm{r} \rrbracket$ to $\llbracket 1 \rrbracket)$.

Case \backslash Number	Direct	Dual	Plural	Singulative	Generic
Nominative	$\mathrm{N} \Theta \mathrm{n}$	Njor	Nin ${ }^{1}$	$\mathrm{N}^{\gamma} \mathrm{l}$	Nu
Accusative	$N \Theta n \Theta^{\text {ei/ae }}$	$\mathrm{N}^{\mathrm{n}} \Theta \mathrm{r}$	$\mathrm{N} \Theta \mathrm{r}$	$N \Theta n \Theta^{\text {ei/ae }} \mathrm{n}$	Nan
Dative	$\mathrm{N} \Theta \mathrm{ns}$	N Θ ya	Neri	$\mathrm{N}^{\mathrm{n}} \mathrm{s}^{\text {s }}$	Nas
Genitive	Nil	$\mathrm{N}^{\text {til }}$	Nevi	$\mathrm{N}^{\mathrm{n}} \mathrm{in}^{1}$	$\mathrm{N}^{\mathrm{n}} \mathrm{e}$
Locative	$\mathrm{L} \Lambda \mathrm{s}$	$\mathrm{L} \Lambda \mathrm{c}$	$\mathrm{L} \Lambda^{\pi}{ }^{\text {S }}$	L $\Lambda^{\gamma}{ }^{\text {n }}$	Le $\Phi^{\text {L }}$
Instrumental	cjaIes	cjaIecp	cjal'o	cjaI'ans	${ }_{\text {cjaIe }} \Phi_{\mathrm{L}}$
Abessive	bja○Ies	bja○Iecb	bjaoI'o	bjaoI'ans	bja○Ie $\Phi_{\text {L }}$
Semblative	Sit	Set		$\operatorname{Sict} \Theta$	Sicp

Table 12.17: Declensions for sixth-declension nouns. ${ }^{1}$ Nien, N^{n} ien for $\llbracket-\mathrm{in} \rrbracket$ nouns

Case \backslash Number	Singular	Dual	Plural	Generic
Locative	pelas	pelsac	pelir	peris
Instrumental	pelca	pelcac	pelcar	pelcef
Abessive	pilpa	pilpac	pilpar	pilpef
Semblative	pjot	pjocte	pjet	perp

Table 12.19: Declensions for first-person pronouns.

Case \backslash Number	Singular	Dual	Plural	Generic
Locative	olas	olsac	oler	ores
Instrumental	olca	olcac	olcar	olcef
Abessive	epa	epac	epar	apef
Semblative	cet	cete	cet	cefte

Table 12.20: Declensions for second-person pronouns.

12.9 L-avoidance

All declensions except for the fifth require an L stem that is frequently or even obligatorily distinct from the N stem. In addition, the L stem of a noun is fairly unpredictable from the corresponding N stem. The use of L stems thus adds a significant burden in acquiring and using the language. As a result, several periphrastic constructions to replace the use of the locative, instrumental, and abessive cases have come into use.

Case	Replacement	Signal	Comment
Locative	Genitive	fones location-LOC.DI	
	Dative	es inside	Especially used for nouns describing areas
Instrumental			
Abessive	Genitive	intaras absence-LOC.DI	
	Genitive	linselpa help-ABESS.DI	

Table 12.18: L-avoidance strategies in Narâp Crî̀.
L-avoidance is more common with rarer nouns, as well as with names. However, using the cases that it replaces is considered more elegant and preferred in formal language.

12.10 Pronouns and determiners

12.10.1 Personal pronouns

Basic personal pronouns

The basic personal pronouns (Tables 12.19 - 12.23) are defective: they lack any forms for the core cases.

Case \backslash Number	Singular	Dual	Plural	Generic
Locative	eri	erjor	eren	eref
Instrumental	cjas	cjac	cjar	cjaf
Abessive	irpa	irpac	irpar	irpef
Semblative	atir	irce	adit	aden

Table 12.21: Declensions for third-person celestial pronouns.

Case \backslash Number	Singular	Dual	Plural	Generic
Locative	ose	osec	oros	oref
Instrumental	cjos	cjoc	cjor	cjof
Abessive	irpos	irpoc	irpor	irpof
Semblative	ator	ircon	adit	aden

Table 12.22: Declensions for third-person terrestrial pronouns.

Case \backslash Number	Singular	Dual	Plural	Generic
Locative	lase	lasec	laser	lasef
Instrumental	lasce	lascel	lasci	lascef
Abessive	lapes	lapecp	laper	lapef
Semblative	lefen	lefedi	adit	aden

Table 12.23: Declensions for third-person human pronouns.

Person \＆gender	Form
1st	＝＇pe
2nd	＝＇ve
3rd celestial	＝＇（a）c
3rd terrestrial	＝＇oc
3rd human	＝＇（o）r
Reflexive	＝＇（ê）cp

Table 12．24：Pronominal clitics in Narâb Crîp．

The first－and second－person pronouns are treated as if they were in the celestial gender， even though they will often refer to humans．

Basic personal pronouns are in the category p and avoid manifesting as free morphemes． They manifest in the following ways，ordered from most to least preferred：
－Fused with a coordinating conjunction if found as the left element
－In a relational with an object prefix
－As an object affix on the verb if in the accusative or dative case
－As a possessive postclitic（Sub－subsection 12．10．1）if in the genitive case，or in the nom－ inative case of a nominalized verb phrase
－Omitted if inferable from the subject affix on a finite verb form
－As an independent form when in a non－core case
－Homophonic with the emphatic pronouns（Sub－subsection 12．10．1）

Possessive clitics

Narâp Crîp uses clitics to mark a pronominal possessor，listed in Table 12.24
The vowels of the third－person celestial and human possessive clitics are omitted after an open syllable．

If the reflexive clitic immediately follows a vowel other than $\llbracket u \rrbracket$ ，then it changes that vowel to its hatted counterpart．If the vowel in question was not already hatted，then the pos is moved immmediately before it．

The clitic 〈＝’ћe〉 is used to indicate that the possessor is the referent of a prior 〈šino〉 or〈nema〉（Subsection 12．10．4）．

The third－person possessive suffixes are also used in the double－marked possessive con－ struction．In such a construction，the possessor takes the same case as the possessee and the clitic $\langle=$＇ p\rangle after a vowel or $\langle=$＇ep〉 after a consonant．The possessee takes the appropriate possessive clitic depending on the gender of the possessor．The possessor and possessee are not required to be adjacent to each other or even in a particular order．

In the general case，the possessive construction is used strictly for possession．That is，it does not have other functions of the genitive case such as apposition or composition．

The possessive construction is also used with the noun 〈alip〉something other than as the possessee to＇negate＇the possessor．This usage cannot be substituted with the genitive （although using non－third－person pronominal clitics on 〈alip〉 is permitted）．

This construction is used with the pronouns 〈šino〉 and 〈nema〉 as the possessor in or－ der to avoid ambiguity with the determiners，which are the genitive singular forms of these pronouns．

The use of the possessive construction is otherwise quite rare．

Reflexive and reciprocal pronouns

There is only one reflexive pronoun，〈cenp〉，whose declensions are shown in Table 12.25

Case \backslash Number	Singular	Dual	Plural	Generic
Nominative	cenp	cenp	cemar	cemu
Accusative	cemen	cemas	cemas	ceman
Dative	cemi	cemic	cemir	cemase
Genitive	cema	cemac	cemo	ceme
Locative	ces	cesor	cis	cesef
Instrumental	ceja	cejac	cipa	cejaf
Abessive	cinpa	cinpac	cinpa	cinpaf
Semblative	cemit	cjorto	cit	cemicp

Table 12．25：Declensions for the reflexive pronoun 〈cenp〉．

Emphatic pronouns

Combining a reflexive pronoun with a possessive clitic creates an emphatic pronoun，which acts roughly like a personal pronoun with an independent form but places focus on the refer－ ent．

Clusive pronouns

12．10．2 Interrogative pronouns and determiners

The interrogative determiners and pronouns in Narâb Crîp are shown in Table 12.26
Note that 〈penna〉 has an intrinsically mutated S stem．
The pronouns \langle pen〉 and 〈peler〉 are irregular．

Type	Interrogative
Determiner	mê Δ
Pronoun	pen，．．．
Pronoun（human）	penna，pepas，mpadit（Ih）
Pronoun（elective）	meel，maen，mełel，mirłos，meћot（IIIt）
Pronoun（place）	parja，perpas，pjalit（Ic）
Pronoun（time）	penelva，pełevas，pełevit（Ic．m）
Pronoun（event）	$?$
Pronoun（idea or speech）	peler，．．．
Pro－verb	nepit，nea，nepelta，nelpa，nelpeta，nolpapos，nolpeve，．．．

Table 12．26：Interrogative determiners and pronouns in Narâp Crîp．

Case \Number	Singular	Dual	Plural	Generic
Nominative	pen	pen	penar	penaf
Accusative	penen	penas	penas	penas
Dative	peni	penic	penir	penef
Genitive	pena	vpenac	vpeno	penaf
Locative	pes	pesor	pis	pesac
Instrumental	peya	pejac	pipa	pepaf
Abessive	pinep	pinpac	pinpa	pinpaf
Semblative	pedit	pjorto	pit	pedecp

Table 12．27：The declension of the irregular pronoun 〈pen〉 what．

Case \backslash Number	Singular	Dual	Plural	Generic
Nominative	peler	pelec	penare	penafel
Accusative	penrep	penarep	penarep	penres
Dative	penres	penrecb	penares	peneves
Genitive	penril	vpenric	vpenal	penavil
Locative	penrap	penrap	penarp	penavap
Instrumental	penracpa	penracpa	penarcpa	penavacp
Abessive	penrapa	penrapa	penarpa	penavapa
Semblative	pelet	pelecp	pelat	pelfet

Table 12．28：The declension of the irregular pronoun 〈peler〉 what（idea，speech）．

Informally，$\langle\mathrm{pen}\rangle$ can be used instead of \langle penna〉 to refer to persons．

Type	Proximal	Distal
Determiner (celestial or human)	lê	tê
Determiner (terrestrial)	el	om
Pronoun (celestial)	ela, elras, elit (Ic)	enta, ontas, ensit (Ic)
Pronoun (terrestrial)	elos, elros, elot (IIIt)	entos, ontos, ensot (IIIt)
Pronoun (human)	eltan, elnas, enlit (Ih)	eften, iftes, cjariftes, cjarefto, evrit (VIh)
Pronoun (place)	elgren, ...	engren, ...
Pronoun (time)	endîr, endil, ondelt, endit (IIc.m), ina, jonas, insit (Ic.m)	
Pronoun (event)	$?$?
Pronoun (idea or speech)	felja, foljas, felit (Ic)	fetja, fotas, fedit (Ic)
Pro-verb	helit	

Table 12.29: Demonstrative determiners and pronouns in Narâp Crîp.

12.10.3 Demonstrative pronouns and determiners

The demonstrative determiners and pronouns in Narâp Crîp are shown in Table 12.29 .
The determiners $\langle l \mathbf{l}\rangle$ and \langle tê \rangle trigger eclipsis only if they lie directly before the head of what they modify.

The pronouns elgren and engren are irregular.

Case \Number	Singular	Dual	Plural	Generic
Nominative	elgren	elgjor	elgrin	elgref
Accusative	elgranen	elgranor	elgrenin	elgrenef
Dative	elgres	elgrecp	elgras	elgresef
Genitive	elgrer	elgreric	elgrir	elgrerif
Locative	eši	ešic	ešin	ešif
Instrumental	esar	esac	esor	esaf
Abessive	epa	epac	epar	ecpaf
Semblative	elgrit	elgricte	elgret	elgricp

Table 12.30: The declension of the irregular pronoun 〈elgren〉 here.

Case \backslash Number	Singular	Dual	Plural	Generic
Nominative	engren	engjor	engrin	engref
Accusative	engranen	engranor	engrenin	engrenef
Dative	engres	engrecp	engras	engresef
Genitive	engrer	engreric	engrir	engrerif
Locative	eči	ečic	ečin	ečif
Instrumental	etar	etac	etor	etaf
Abessive	eða	eðac	eðar	egðaf
Semblative	engrit	engricte	engret	engricp

Table 12．31：The declension of the irregular pronoun 〈engren〉there．

12．10．4 Quantification

The pronouns 〈šino，šjonas，šedit〉（Ic）means all，and 〈nema，nomes，nemit〉（Ic）means some or any．When qualified with a modifying phrase，their scopes are restricted：
（17）naven šinaf ndranlos．

nav－en	šin－af	$n \backslash$ dranl－os．
human－GEN．SG	all－NOM．GC	PFV \backslash die－3GC．PAST．PFV

All humans［will］die．

However，both of these quantifiers can also be used in the genitive singular as determiners， provided that the head of the noun phrase being modified is partially lenited．Furthermore， forms of 〈ðên〉 are not mutated．That is，the above example may have used 〈šinen navaf〉 instead．

When a noun phrase containing 〈šino〉 or 〈nema〉 is in the generic number，it is considered to cover all or some of the relevant individuals in general．When such a noun phrase is in any other number，it is considered to have a partitive meaning，with the number reflecting the quantity of the whole：
（18）naven šinor sâna mênčeb．

nav－en	šin－or	sân－a	mênč－e－p.
human－GEN．SG	all－ACC．PL	bear－NOM．SG	eat－3SG．PFV－PAST

All of the humans were eaten by a bear．

Of course，this example could have used 〈šinen navar〉 instead．
Scope ordering is covered in Section 9.4
The semantically related noun 〈ruf〉 each modifies a noun somewhere before it in the same clause with the same case．If $\langle r u f\rangle$ does not immediately follow the noun that it affects，that noun undergoes a partial lenition if it does not already have a mutation．

The determiner 〈mel〉means much or many．It is not inflected，but the corresponding pronoun 〈denfo，danfes，denfit （Ic）is．From the latter is derived＜\＆denfo，\＆danfes，\＆denfit \rangle（Ic） majority．Similarly，the determiner 〈dân〉few，little corresponds to the pronoun 〈dane，dones，

Operation	$X=\mathbf{N P}$	$X=\mathbf{1}$	$X=\mathbf{2}$	$X=\mathbf{3}$	Inherits number \＆gender from
X and Y	＝＇ce	＝＇cjo	＝＇gjo	＝＇cil	X plus Y
X or Y	＇＇te	＝＇čo	＝＇djo	＝＇čil	Y
X xor Y	＝＇re	＝＇pre	＝＇vre	＝＇ril	Y
X but not Y	＝＇ne	＝＇njo	＝＇mjo	＝＇nil	X

Table 12．32：Coordinating clitics in Narâp Crîp．
denit〉（Ic），but the word for minority is 〈resa，risas，redit〉（Ic）．Additionally，〈dân〉 triggers eclipsis in the head noun．

For numerals，see Chapter 15

12．11 Coordination

Noun phrases are coordinated by attaching a clitic to all except the first coordinand．A noun phrase may be coordinated only with others of the same case．

When the first coordinand is pronominal，then it is fused into the coordinating clitic，leav－ ing the other coordinands behind．

The gender of a coordinated noun phrase involving the and operation is the strongest of those of the coordinands．For this purpose，the human gender is stronger than the celestial， which is stronger than the terrestrial gender．

All coordinated noun phrases inherit the person in the same way：the first person takes precedence over the second，which takes precedence over the third．

When there are more than two coordinands，then the respective clitics occur on each element after the first．X_{1} xor ．．．xor X_{n} means exactly one of $X_{i} ; X_{1}$ but not \ldots ．but not X_{n} means X_{1} but not any later X_{i} ．All pronominal clitics occur at the end of the coordinated noun phrase． In＇but not＇－coordinated phrases，there can be only one pronominal clitic（namely，the one representing the first item）．

12．12 Quotatives

Quotatives are formed by wrapping the quoted material in quotation marks，followed by a particle depending on case and directness，forming a noun phrase．

Direct quotatives are used for verbatim speech．Indirect quotatives indicate some kind of paraphrasing and do not necessarily represent what someone has said．There exists a separate set of switch－reference indirect quotatives，which are used when（1）both the outer and inner clauses have a third－person subject and（2）the subjects do not corefer．

Direct quotatives necessarily inherit the personal and temporal deixis of the one who said its contents．The personal deixis does not shift inside an indirect quotative，but the temporal deixis shifts to that of the outer event：
（19）\＃flirora «eltan cpasce» rep marap．
\＃fliror－a «elt－an cpasc－e» rep mar－a－p．
（name）－NOM．SG salmon－ACC．co cook－3sG QUOT．ACC．IND say－3sG－PAST
\＃flirora ${ }_{1}$ said that they ${ }_{1}(\mathrm{sg})$ were cooking salmon．

Case	Direct	Indirect	Indirect－SR
Nominative	ner	ler	n／a
Accusative	ne	rep	rast
Dative	nes	res	rens
Genitive	nel	ril	rels
Locative	nos	rap	reppe
Instrumental	noca	racpa	racpaf
Abessive	nopa	rapa	rapas
Semblative	nit	ret	ret

Table 12．33：Quotative particles in Narâp Crîb．
（20）\＃flirora «eltan cpasce» rast marap．
\＃fliror－a «elt－an cpasc－e» rast mar－a－p．
（name）－NOM．SG salmon－Acc．co cook－3sG QUOT．Acc．IND．SR say－3sG－PAST
\＃flirora ${ }_{1}$ said that they ${ }_{2}(\mathrm{sg})$ were cooking salmon．

12．13 Names

The most salient types of names－namely，personal and place names－have markers，although other types of names，such as titles of works，do not．

Names can manifest in two ways：as unQualified names or as Qualified names．Unqual－ ified names refer to names that stand alone as full noun phrases．

A qualified name，on the other hand，is a name accompanied by the type of entity it refers to as done in Toki Pona．In such a name，the common noun comes first and is suffixed with a marker or punctuation correlated to the name：
－〈\＃〉 for a given name
－$\langle+\rangle$ for a surname

- 〈＋\＃〉 for a surname and a given name
- 〈＠〉 for a place name
- 〈«»〉 for a work title

In particular，the common noun is never suffixed with a nef，and these postfixes do not affect the letter sum of the noun．

Qualified names are used in the following situations：
－As part of the conventional name for geographic features，such as 〈vlêcadir＠＠elpana〉 the Elpana archipelago．
－To ascribe a title to a personal name（Subsection 12．13．1）．

- To emphasize or disambiguate the type of entity that is being referred to.
- To refer to an entity by a name that is not phonotactically or morphologically adapted to Narâp Crîp.

12.13.1 Personal names

Narâp Crîp recognizes two parts of personal names: the surname and the given name, in that order. Surnames are marked with either a tor, $\langle+\rangle$ or a njor, $\left\langle+{ }^{*}\right\rangle$. The tor is used for surnames passed by native conventions (i.e. from parent to child within the same gender), while the njor marks a surname passed using non-native conventions. The presence of a njor is correlated but does not always coincide with that of a nef ($\left\langle^{*}\right\rangle$): 'foreign' surnames can be passed by 'native' conventions; in the opposite direction, a njor might be present without a nef in a calqued surname, as well as in a few native surnames that are traditionally passed by a non-native convention.

A given name is marked with a carb, $\langle \#\rangle$. If a person is known by a single name only, then the name is treated as a given name.

Both the surname and the given name are declined nouns.
A person is addressed or mentioned using the surname, given name, or both, with the surname being more formal than the given name. Nonetheless, the choice of whether to address someone by their surname or by their given name can also depend on other factors such as convenience of pronunciation or distinguishing between multiple people with the same given name or surname.

The use of titles is limited: there is no direct equivalent to Mr. or Ms.. Instead, titles are used merely to describe the role of the person. Notably, (1) they are always nouns, (2) they are never used in the vocative, (3) they are used with the person's name when the person in question is introduced, and (4) the use of the title alone in later mentions over the name carries no social connotation otherwise. The closest equivalent to sir or madam is 〈cercerin〉, meaning stranger, which is used to address someone whose name is not known.

A title can be used as a part of a qualified name:
(21) dosarep+\# +astova \#agepne «tfaren inora sarałêns arnenden cenventês ndogenћal» rep marap.

dosareð- $\varnothing+\#$ teacher-NOM.SG	$\begin{aligned} & \text { +astov- } a \\ & \text { (surname)-NOM.SG } \end{aligned}$	$\begin{aligned} & \text { \#agepn-e } \\ \text { G } & \text { (given)-NOM.SG } \end{aligned}$	«tfar-en inor-a money-GEN.SG void-NOM.SG
sarat-êns	arnend-en	cenvent-ês	$n \backslash$ dogen \ddagger-al»
school-Acc.sG	music-GEN.CO	course-DAT.co	PFV\CAUS-twist-3sG.INV
rep	mar-a-p.		
QUOT.ACC.IND	say-3sG-PAST		

+astova \#agepne, a teacher, stated that the lack of money has caused the school to reduce funding for music classes.

Because titles are used with names only to introduce a person, $\langle+\#\rangle$ is the most common choice for the postmarker.

12.13.2 Place names

The name of any kind of place is marked with an es, $\langle @\rangle$.

12．13．3 Language names

Languaeg names are zero compounds in which the first word is 〈narâp〉 language．The second word is frequently the name of a place associated with the language，as in 〈narâp＠asoren〉， or an uninflected word．The major exception is 〈 \mathfrak{y} arâp crîb〉，which uses the common noun〈crîb〉 forest．

12．13．4 Titles of works

Chapter 13

Verbs

Predicates can be divided into independent verbs (iverbs) and relationals. In this chapter, we look at verbs; Chapter 14 covers relationals.

The adnominal and adverbial forms of a predicate are collectively called mODIFYING FORMS.

13.1 Valency and case frame

All predicates have at least a nominative-case argument (the subject). Verbs are classified into five valency classes:

- Intransitive verbs take only a nominative argument, without an accusative or dative argument.
- Semitransitive verbs take a nominative and dative argument.
- Transitive verbs take a nominative and accusative argument.
- Ditransitive verbs take a nominative, accusative, and dative argument.
- Auxiliary verbs (Subsection 13.10.3) are not iverbs and thus are not predicates. Instead, they are a class of predicate modifier.

Note that the labels of "nominative", "accusative", and "dative" arguments are somewhat arbitrary; the role of each case depends on the verb in question. However, there are some general tendencies:

- The agent, if present, is almost always the nominative argument.
- If the action described by a verb is perceived as having a direct effect on the patient, then the verb is more likely to be transitive than semitransitive.
- Conversely, if the action described by a verb is perceived as having an indirect effect on the patient, then the verb is more likely to be semitransitive than transitive.
- In a ditransitive verb with both a theme and a recipient, the theme is more likely to be accusative than dative.
- If there is an experiencer, then it is more likely than not to be in the nominative.

Feature	Independent verbs	Relationals
Semantics	Can indicate an action or state	Can indicate a state in relation to another entity
Valency	1-3 arguments	Usually 2 arguments, but occasionally 3
Case frame	Nominative, plus possibly accusative and dative arguments depending on the verb	Nominative plus dative by default; the second argument can be accusative to change the meaning to involve motion towards the object or abessive for motion away from it
Finite form	Finite conjugations	Attached to a scaffolding verb
Modifying nouns	Participle forms (marked for case of shared noun in both the embedded and the main clause, as well as the gender of the shared noun in the main clause)	Lemma form or modified, depending on bias
Modifying verbs	Converbal forms	Lemma form or modified, depending on bias
Nominalized form	Particle + infinitive	?

Table 13.1: Comparison between independent verbs and relationals.

13.2 Predicate modifiers

Predicate modifiers take as input one or more predicates and output another predicate as a result. They include:

- Auxiliary verbs: the resulting predicate has the same case frame as the input
- The causative voice affix 【doo-】, which increases valency by one
- Adverbial phrases

13.3 Verb categories

Predicates can mark the person and number of various arguments. First-person dual or plural arguments marked this way are also distinguished by clusivity. Whenever this is allowed, it might be possible to instead specify a reflexive or reciprocal argument.

Narâb Crîb has two tenses: PRESENT (more precisely, NONPAST) and PAST. In addition to the present, the present tense covers the future as well as the immediate past.

The present tense is also used as a narrative present: in stories, the past tense is used only for events that had happened before the current point.

Narâb Crîb has two aspects: imperfective and perfective. The imperfective aspect is used for ongoing (such as progressive or habitual) actions.

Person \backslash Number	Singular	Dual	Plural	Generic
1st excl．	$-\Theta^{\tau}$	$-\Theta^{\tau} \mathrm{n}$	$-\Theta^{\varphi} \mathrm{cp}$	$-\Theta^{\tau} \Phi$.
1st incl．		$-\Theta^{\tau \cdot \eta} \mathrm{n}$	$-\Theta^{\varphi \cdot \eta} \mathrm{cb}$	
2nd	$-\Theta^{\varphi} \mathrm{S}$	$-\Theta^{\varphi} \mathrm{ns}^{*}$	$-\Theta^{\varphi} \mathrm{r}$	$-\Theta^{\varphi} \Phi$.
3rd	$-\Theta^{\varphi}$	$-\Theta^{\varphi} \mathrm{n}$	$-\Theta^{\psi}$	-u

Table 13．2：Conjugation of vitreous verbs according to the subject（direct aspect）．

Person \backslash Number	Singular	Dual	Plural	Generic
1st excl．	$-\Theta^{\tau} l$	$-\Theta^{\tau}$ nis	$-\Theta^{\varphi} \mathrm{cbis}$	$-\Theta^{\tau} \Phi$.
1st incl．		$-\Theta^{\tau \cdot \eta}$ nis	$-\Theta^{\varphi \cdot \eta} \mathrm{cis}$	
2nd	$-\Theta^{\varphi}$ res	$-\Theta^{\varphi}$ nsis	$-\Theta^{\varphi}$ ris	$-\Theta^{\varphi} \Phi$.
3rd	$-\Theta^{\varphi} 1$	$-\Theta^{\varphi}$ nis	$-\Theta^{\psi}$ ris	- os

Table 13．3：Conjugation of vitreous verbs according to the subject（inverse aspect）．

In conjugation，aspects can be labeled as direct or indirect．The perfective aspect is used for completed actions．The direct aspect is imperfective for the present tense and perfective for the past tense；the inverse aspect is the other aspect．

13．4 Inflection of verbs

A verb has six stems： I （infinitive）， N （nonpast）， P （past）， R （nominative－rcase relative）， Q （other relative），and L（locative）．In addition，it has one thematic vowel，Θ ，which is either 【a】 or 【i】．

The primary lemma form of a verb is its infinitive，which is always $\llbracket \Theta+\mathrm{t} \rrbracket$ ．
If the stem of a verb ends with a vowel that is the same as the initial vowel of the following affix or differs only in tone，then $\llbracket \hbar \rrbracket$ is inserted as a bridge between them．This epenthesis applies to all verb forms and is implied whenever an abstract form is given．

13．5 Finite forms

Verbs can be divided into vitreous and resinous verbs based on the conjugation of their finite forms．Resinous verbs exhibit more fusion in the finite forms than vitreous verbs，and they have a few forms that are absent in vitreous verbs．

A third－person generic subject not specified elsewhere often corresponds to an impersonal subject．

13．5．1 Vitreous verbs

In vitreous verbs，there are two different affixes used depending on the aspect relative to the tense（Tables 13.2 \＆13．3）．

Present－tense forms use the N stem and past－tense forms use the P stem．For the past tense， there is an additional tense suffix if the person－number affix has only one vowel：$\llbracket-\mathrm{p} \rrbracket$ when the preceding affix ends with a vowel or $\llbracket-\mathrm{r} \rrbracket$ and \llbracket－ta \rrbracket otherwise．（To be precise，the empty

Person \Number	Singular	Dual	Plural	Generic
1st excl.	pe	pjo	po	ten
1st incl.		pjô	pô	
2nd	ve	vi	vo	ves
3rd celestial	le			
3rd terrestrial	lu			
3rd human	les	lis	los	
3rd epicene		li	lo	las
Reflexive	cin			
Reciprocal	rip			

Table 13.4: Object affixes for vitreous verbs.

Person \backslash Number	Singular	Dual	Plural	Generic
1st excl.	$\mathrm{N} \Theta^{\tau}$	$\mathrm{N} \Theta^{\tau \cdot \eta} \mathrm{c}$	$\mathrm{N} \Theta^{\varphi} \mathrm{p}$	$\mathrm{N} \Theta^{\tau} \Phi_{\mathrm{N}}$
1st incl.		$\mathrm{N} \Theta^{\tau} \mathrm{c}$	$\mathrm{N} \Theta^{\varphi \cdot \eta} \mathrm{b}$	
2nd	$\mathrm{N}^{\varphi} \mathrm{S}$	$\mathrm{N} \Theta^{\varphi} \mathrm{vi}$	$\mathrm{N} \Theta^{\varphi} \mathrm{r}$	$\mathrm{N} \Theta^{\varphi} \Phi_{\mathrm{N}}$
3rd	$\mathrm{N}^{\varepsilon 1}$	N e	$\mathrm{N} \Theta^{\psi}$	Nu

Table 13.5: Conjugation of resinous verbs according to the subject (present imperfective).
${ }^{1} \mathrm{~N} \Theta^{\varphi}$ if followed by an object affix.
coda is changed to $\llbracket-\mathrm{p} \rrbracket$, and $\llbracket-\mathrm{r} \rrbracket$ is changed to $\llbracket-\mathrm{r} \rrbracket \rrbracket$.) If the person-number affix contains two or more vowels, then there is no tense affix and P^{t} is used in place of P.

Additionally, in perfective forms, the verb is eclipsed.
The second-person dual direct suffix is $\llbracket-\Theta^{\varphi} \mathrm{ns} \rrbracket$ if there are no subsequent suffixes but $\llbracket-\Theta^{\varphi} \mathrm{n} \rrbracket$ if there are.

The first- and second-person generic forms use phi consonants according to the stem used, possibly with fusion, but before $\llbracket \hbar \rrbracket$-epenthesis.

An object affix can be added immediately after the person-number affix (i.e. before the tense affix if it is present) and shows the person and number of an accusative or dative argument. It is never necessary, but it cannot appear redundantly to an explicitly stated argument.

13.5.2 Resinous verbs

The resinous finite forms are described in Tables 13.5-13.8.
Resinous verbs use object affixes at the end, but the forms used are different from those for vitreous verbs, and there are alternate forms if the object suffix follows $\llbracket-1 \rrbracket$.

If the object affix is prefixed as in the present perfective third-person singular forms, then the first-person plural exclusive and inclusive forms become \llbracket gin $-\rrbracket$ and $\llbracket g i ̂ n-\rrbracket$. Additionally, if an object affix would otherwise be eclipsed, it is instead lenited.

Person \ Number	Singular	Dual	Plural	Generic
1st excl.	- $\mathrm{N} \Theta \mathrm{e}^{1}$	-Nane	$\bigcirc \mathrm{N}^{\tau} \mathrm{n}$	$\mathrm{P} \Theta^{\tau} \Phi_{\mathrm{P}}$
1st incl.		\bigcirc Nâge	$\bigcirc \mathrm{N} \Theta^{\tau \cdot \eta} \mathrm{r}$	
2nd	- Nea	- NEste	$\bullet \mathrm{NO}^{\varphi} \mathrm{ris}$	$\mathrm{P} \Theta^{\varphi} \Phi_{\mathrm{P}}$
3rd	- $\mathrm{NE}^{\text {¢ } 2}$	- $\mathrm{NE}^{\varphi} \mathrm{n}$	$\bullet \mathrm{Ne}^{\psi}$	Nos

Table 13.6: Conjugation of resinous verbs according to the subject (present perfective).
${ }^{1}$ When the final bridge of N is empty, then this form is $\bullet \mathrm{Np} \Theta^{\tau}$, with the final bridge being stripped from N .
${ }^{2}$ The object affix is prefixed instead, and lenition occurs on the object affix instead of eclipsis.

Person \backslash Number	Singular	Dual	Plural	Generic
1st excl.	$\mathrm{P}^{\tau} l t^{1}$	$\mathrm{P}^{\mathrm{n}} \Theta^{\tau} \mathrm{si}$	$\mathrm{P}^{\mathrm{n}} \Theta^{\tau} \mathrm{vi}$	$\Delta \mathrm{N} \Theta^{\tau} \Phi_{\mathrm{N}} \mathrm{ta}$
1st incl.		$\mathrm{P}^{\mathrm{n}} \mathrm{eca}$	$\mathrm{P}^{\mathrm{n}} \Theta^{\tau} \mathrm{i}$	
2nd	$\mathrm{P}^{\varphi} \mathrm{cp}$	$\mathrm{P}^{\mathrm{p}} \Theta^{\varphi} \mathrm{c}$	$\mathrm{P}^{p} \Theta^{\varphi} 1 \Theta^{\tau}$	$\Delta \mathrm{N} \Theta^{\varphi} \Phi_{\mathrm{N}} \mathrm{ta}$
3rd	$\mathrm{P}^{\mathrm{p}} \Theta^{\varphi} \mathrm{l}^{2}$	$\mathrm{P}^{t} \Theta^{\varphi} \mathrm{nb}^{3}$	$\mathrm{P}^{p} \Theta^{\psi} \mathrm{r}$	Pop

Table 13.7: Conjugation of resinous verbs according to the subject (past imperfective).
${ }^{1} \mathrm{P} \Theta^{\tau}$ l when followed by an object affix.
${ }^{2} \mathrm{P}^{\mathrm{p}} \Theta^{\varphi} \mathrm{r}$ when followed by an object affix.
${ }^{3} \mathrm{P}^{\mathrm{t}} \Theta^{\varphi} \mathrm{n}$ when followed by an object affix.

Person \ Number	Singular	Dual	Plural	Generic
1st excl.	$\bullet \mathrm{P}^{\mathrm{t}} \mathrm{O}^{\tau}$	- ${ }^{\text {to }}$ or	\bullet Q $\Theta^{\text {c }} \mathrm{st}^{1}$	\bullet P $\Theta^{\tau} \Phi_{\mathrm{P}} \mathrm{ta}$
1st incl.		- $\mathrm{Q}^{\text {t }}$ or	- $Q^{\text {t }}$ ett ${ }^{2}$	
2nd	- $\mathrm{P}^{\mathrm{t}} \Theta^{\varphi}{ }^{\text {S }}$	- ${ }^{\text {tešsi }}$	- ${ }^{\text {t }} \Theta^{\varphi \cdot \gamma_{S}}$	- $\mathrm{P} \mathrm{\Theta}^{\varphi} \Phi_{\mathrm{p}} \mathrm{ta}$
3rd	- $\mathrm{P}^{\mathrm{t}} \Theta^{\varphi}$	- $\mathrm{P}^{\mathrm{t}} \Theta^{\varphi} \mathrm{ri}$	- $\mathrm{P}^{\mathrm{t}} \Theta^{\mathrm{l}} \mathrm{lt}^{3}$	-Pop

Table 13.8: Conjugation of resinous verbs according to the subject (past perfective).
${ }^{1} \bullet Q^{\mathrm{t}} \Theta^{\tau \cdot \eta} \mathrm{S}$ when followed by an object affix.
${ }^{2} \bullet Q^{t}$ êti when followed by an object affix.
${ }^{3} \bullet \mathrm{P}^{\mathrm{t}} \Theta^{\varphi} 1$ when followed by an object affix.

Person \Number	Singular	Dual	Plural	Generic
1st excl.	pe	pal (pae)	gins	peł (pep)
1st incl.		pâl (paê)	gîns	
2nd	ve	vel (ven)	tor	veł (vep)
3rd celestial	li (gi)			
3rd terrestrial	rel			
3rd human	li (gi)	lec (gep)	ljen (gjan)	
3rd epicene		lec (gep)	lje (gja)	sâ
Reflexive	cin			
Reciprocal	rip (gip)			

Table 13.9: Object affixes for resinous verbs.

Transfinite forms

On top of the finite forms, resinous verbs have TRANSFINITE forms, which encode additional categories. They may be syntactically finite or otherwise and receive object affixes as usual:

- The second-person singular imperative: $\llbracket N^{\mathrm{b}} \mathrm{au} \rrbracket$. The headp $\langle\mathrm{le}\rangle$ is used even when this form is used.
- The supine form, which is an adverbial or adnominal form indicating the purpose of another action: $\llbracket N^{n}$ els $\rrbracket\left(\llbracket N^{n}\right.$ ase \rrbracket before an object affix). This is equivalent to using the relational $\langle\mathrm{roc}\rangle$ with a dative nominalized form.
- The active gerundive forms, which indicate the intended purpose or fate of the subject. The predicative form is $\llbracket \mathrm{N}^{\mathrm{n}} \mathrm{elv} \Theta^{\varphi} \rrbracket$, and the attributive form is $\llbracket \mathrm{N}^{\mathrm{n}} \mathrm{ełor} \rrbracket$ when the head NP is terrestrial and $\llbracket \mathrm{N}^{\mathrm{n}}$ elv $\Theta^{\varphi \cdot \gamma_{n}} \mathrm{n}$ when it is of any other gender. The attributive form has prefixed object affixes. The terrestrial attributive form can also be used adverbially.
- The passive gerundive forms, which indicate the intended purpose or fate of the direct or indirect object. The predicative form is $\llbracket \mathrm{N}^{\mathrm{e}} \operatorname{elv} \Theta^{\varphi} \rrbracket$, and the attributive form is $\llbracket \mathrm{N}^{\mathrm{p}} \operatorname{elv} \Theta^{\varphi \cdot \gamma} \mathrm{n} \rrbracket$. The attributive form has prefixed object affixes. The attributive form can also be used adverbially.

The active and passive gerundive forms are often used for future actions.

13.6 Participles (adnominal forms)

Participle forms of verbs are used in ReLATIVE CLAUSES. The COMMON ARGUMENT of a relative clause is the referent shared between the relative clause and the outer clause. Participles are then distinguished by:

- the RELATIVE CASE or RCASE - the case of the common argument in the relative clause (nominative, accusative, or dative; as well as the genitives of any of these separataely)
－the head case or hCASE－the case of the common argument in the outer clause（any case）
and optionally，depending on the genus：
－the HEAD GENDER or HGENDER－the gender of the common argument in the outer clause
－the head number or hnumber－the number of the common argument in the outer clause

In general，participles with nominative rcase use the R stem，while participles with other rcases use the Q stem．

In terms of participle forms，verbs are first divided into GENERA，which describe the broad pattern of inflection，and within each genus into species．

Participles of GENUS I verbs mark for hgender but not for hnumber．Participles of genus II verbs mark for hnumber but not for hgender．Participles of GENUS III verbs mark for whether or not the hnumber is singular and mark for hgender only when the hnumber is singular．

A participle of a genus I verb with terrestrial hgender triggers a lenition in the noun it modifies if the noun follows the participle immediately．

Because participles agree with the heads of relative clauses，relative clauses can be moved away from their heads．

Participle forms can also take object affixes，but the affixes occur before the root in this case，and the vitreous set is used regardless of the verb＇s material．If an object affix is present， then it describes a nominative，accusative，or dative argument in the embedded clause that is not the common argument．Again，an object affix cannot appear redundantly to an explicitly stated argument，and if an object affix would otherwise be eclipsed，it is instead lenited．

A semantically vague noun such as 〈sar〉 or 〈nava〉 can be used as the head of a relative clause．Alternatively，in informal language，the participle may be modified by a demonstrative determiner for the same purpose．

13．6．1 Genus I

Genus I participles distinguish rcase，hcase，and hgender．

Species I_{1}

Species I_{1} specifies only the forms in which the rcase is nominative．The rest are derived from these as such：
－infix $\llbracket-\mathrm{ab}-\rrbracket$ between the stem and the ending to get the respective forms with accusative rcase，
－infix $\llbracket-\Lambda^{\gamma} p-\rrbracket$ to get the respective forms with dative rcase，
－infix $\llbracket-\Lambda^{\gamma} n-\rrbracket$ to get the respective forms with genitive－of－nominative rcase，
－infix 【－anp－】 to get the respective forms with genitive－of－accusative rcase，and
－infix $\llbracket-\Lambda^{\gamma} n p-\rrbracket$ to get the respective forms with genitive－of－dative rcase．

If the stem ends with $\llbracket p \rrbracket$ or $\llbracket \searrow \rrbracket$ ，then all $\llbracket b \rrbracket$ s in the above infixes are replaced with $\llbracket t \rrbracket s$ ．
Each species I_{1} verb specifies a celestial ending and a terrestrial ending．The celestial ending is one of $\llbracket-\mathrm{a} \rrbracket$ ，$\llbracket-\mathrm{e} \rrbracket$ ，$\llbracket-\mathrm{o} \rrbracket$ ，$\llbracket-\mathrm{an} \rrbracket$ ，$\llbracket-\mathrm{en} \rrbracket$ ，or $\llbracket-\mathrm{in} \rrbracket$ ．The terrestrial ending can be \llbracket－os \rrbracket or \llbracket－or \rrbracket if the celestial ending ends in a vowel，and \llbracket－on】 or \llbracket－or】 if it ends in 【－n】．

For this species，let Λ be the vowel of the celestial ending，Σ its（possibly empty）coda，and Γ the coda of the terrestrial ending．

For nominative to locative hcases，the forms for terrestrial hgender（Table 13．10）are de－ termined separately from the forms for other hgenders（Table 13．11）．

$\boldsymbol{\Sigma}$	\varnothing		\mathbf{n}	
$\boldsymbol{\Gamma}$	\mathbf{s}	\mathbf{r}	\mathbf{n}	\mathbf{r}
Nominative	－os	－or	－on	－or
Accusative	－on	－on	－anon	－on
Dative	－op	－op	－os	－os
Genitive	－el	－el	－el	－el
Locative	－orp	－orp	－ori	－ori

Table 13．10：Terrestrial－hcase forms by ending type．

Σ	\varnothing		n	
Hgender	Cel	Hum	Cel	Hum
Nominative	－Λ	－Λc	－Λn	$-\Lambda n$
Accusative	$-\Lambda n$	－ôr	－$\Lambda n a$	$-\Lambda^{a / e} a n$
Dative	$-\Lambda s$	－Λs	－Λ ns	－$\Lambda n \mathrm{~ns}$
Genitive	$-\Lambda^{\gamma_{n}}$	－jôr	－il	－il
Locative	$-\Lambda^{\gamma}$ S	$-\Lambda^{\gamma}$ S	$-\Lambda^{\gamma}$ S	$-\Lambda^{\gamma}$ S

Table 13．11：Celestial－and human－hcase forms by ending type．
Species I_{1} contains three sets of suffixes for the instrumental－and abessive－hcase forms （Table 13．12）．The set to be used must be memorized for each verb；however，verbs whose R or Q stems contain labial consonants will generally not take the α－class endings，and those whose stems end with $\llbracket \downarrow \rrbracket$ or $\llbracket ð \rrbracket$ take the δ－class endings if they would not otherwise be in class α ．

Case	Instrumental			Abessive			
Hgender	Cel	Ter	Hum	Cel	Ter	Hum	
$\boldsymbol{\alpha}$	－epa	－epos	－epac	－eši	－eši	－ešic	
$\boldsymbol{\beta}$	－（e）la	－（e）lon	－（e）lac	－（e）na	－（e）nor	－（e）nac	
$\boldsymbol{\gamma}$	－（e）la	－（e）lon	－（e）lac	－（e）ta	－（e）tor	－（e）tac	
$\boldsymbol{\delta}$	－êl	－êl	－êl	－eva	－evor	－evac	

Table 13．12：Instrumental－and abessive－hcase endings．

In rcases other than nominative, the β - and γ-class instrumental suffixes lack the initial $\llbracket e \rrbracket$. That is, the infixes for these rcases become $\llbracket-$-apl $-\rrbracket$, $\llbracket-\Lambda^{\gamma} p l-\rrbracket$, $\llbracket-\Lambda^{\gamma}$ nl- \rrbracket, \llbracket-anpl- \rrbracket, and $\mathbb{\llbracket}$ $\Lambda^{\gamma} \mathrm{nbl}-\rrbracket$.

The abessive suffixes work similarly, except that the genitive-of-nominative-rcase infix becomes \llbracket-ann-】 or \llbracket-ant- \rrbracket instead. (Equivalently, these suffixes work as if they cause the stem plus rcase infix to be fused with their first consonant.)

Finally, the semblative forms have the affixes $\llbracket-\mathrm{e} \rrbracket$ for all three genders.

Species I_{3}

Species I_{3} specifies the forms for the nominative, accusative, and genitive rcases (Table 13.13). The genitive-rcase forms are derived from their non-genitive-rcase counterparts by fusing the appropriate stem with $\llbracket n \rrbracket$. This species contains two subspecies: w and x.

Species I_{3} uses the same instrumental and abessive affixes as I_{1}, except that the vowels in the β - and γ-class suffixes are never omitted.

13.6.2 Genus II

Genus II participles distinguish rcase, hcase, and hnumber.

Species II $_{4}$

Species II_{4} specifies only the forms in which the rcase is nominative. The rest are derived from these as such:

- infix $\llbracket-\mathrm{el}-\rrbracket$ between the stem and the ending to get the respective forms with accusative rcase,
- infix $\llbracket-\mathrm{el}-\rrbracket$ to get the respective forms with dative rcase,
- infix $\llbracket-\Lambda n-\rrbracket$ to get the respective forms with genitive-of-nominative rcase, where Λ is the first vowel of the nominative-rcase ending,
- infix $\llbracket-\Lambda n l-\rrbracket$ to get the respective forms with genitive-of-accusative rcase, and
- infix $\llbracket-\Lambda n ł-\rrbracket$ to get the respective forms with genitive-of-dative rcase.

The ending can be one of $\llbracket-\mathrm{a} \rrbracket$, $\llbracket-\mathrm{e} \rrbracket$, $\llbracket-\mathrm{o} \rrbracket$, $\llbracket-\mathrm{as} \rrbracket, \llbracket-\mathrm{es} \rrbracket, \llbracket-\mathrm{ar} \rrbracket$, $\llbracket-\mathrm{er} \rrbracket$, $\llbracket-\mathrm{os} \rrbracket$ or \llbracket-or \rrbracket, or $\llbracket-$ on】. The last three endings encompass the terrestrial ending set (Table 13.15), and the others encompass the celestial ending set (Table 13.15).

Let Λ be the vowel of the ending and Σ its (possibly empty) coda. Then the celestial ending set is as follows:

The terrestrial ending set is as follows:

Subspecies	w			\mathbf{x}		
Hcase \Hgender	Cel	Ter	Hum	Cel	Ter	Hum
Nominative rease						
Nominative	-a	-os	-ac	-ip	-os	-icp
Accusative	-an	-on	-ôr	-inp	-on	-orb
Dative	-as	-op	-as	-ipo	-op	-icpo
Genitive	-er	-or	-er	-ir	-or	-ir
Locative	-ei	-ei	-ei	-ei	-ei	-ei
Instrumental	See below					
Abessive	See below					
Semblative	-et	-ot	-est	-it	-ot	-ist
Accusative rcase						
Nominative	-e	-ios	-ec	-ap	-avas	-acp
Accusative	-en	-osi	-en	-anp	-avan	-arb
Dative	-es	-iop	-es	-apo	-avap	-acpo
Genitive	-eri	-ori	-eri	-ar	-avar	-ar
Locative	-ami	-ami	-ami	-ami	-ami	-ami
Instrumental	$\llbracket Q^{\dagger} \rrbracket+$ nominative-rcase endings					
Abessive	$\llbracket Q^{\dagger} \rrbracket+$ nominative-rcase endings					
Semblative	-apet	-apot	-apest	-apit	-apot	-apist
Dative rcase						
Nominative	-ae	-ajos	-ace	-ep	-evas	-ecp
Accusative	-aen	-ajon	-acen	-enp	-evan	-erp
Dative	-aes	-ajop	-aces	-epo	-evap	-ecpo
Genitive	-ari	-aôr	-ari	-er	-evar	-er
Locative	-emi	-emi	-emi	-emi	-emi	-emi
Instrumental	【Q $\mathrm{Q}^{\mathrm{p}} \rrbracket$	nomin	tive-rca	se end		
Abessive	【Q $\mathrm{Q}^{\mathrm{p}} \rrbracket$	nomin	tive-rca	se end		
Semblative	-epet	-epot	-epest	-epit	-epot	-epist

Table 13.13: Participle form inflections for species I_{3}.

Hcase \Mnumber	Singular	Dual	Plural	Generic
Nominative	$-\Lambda \Sigma$	- $\Lambda \mathrm{c}$	$-\Lambda^{\pi}$	$-\Lambda^{+} \Phi$.
Accusative	- Λn	-ôr	-on	$-\Lambda^{+} \Phi$.en
Dative	$-\Lambda s^{1}$	$-^{\mathrm{t}} \Lambda \mathrm{s}$	-os	$-\Lambda^{+} \Phi$. es
Genitive	$-\Lambda^{\gamma} n$	${ }^{\text {t }} \Lambda^{\gamma}{ }^{\text {n }}$	-in	-n еФ.
Locative	$-\Lambda^{\gamma}$ S	$-\Lambda^{\gamma}$ sta	-is	-еФ.о
Instrumental	$-\Lambda^{\gamma} \mathrm{ls}$	$-\Lambda^{\gamma} \mathrm{lpa}$	-ils	-eФ.os
Abessive	$-\Lambda^{\gamma} \mathrm{ma}$	$-\Lambda^{\gamma}$ nva	-ima	-elce Φ.
Semblative	-it	-icta	-et	-icp

Table 13.14: Participle form inflections for species II_{4} (celestial endings). ${ }^{1}$-o if Σ is \llbracket s \rrbracket.

Hcase \Mnumber	Singular	Dual	Plural	Generic
Nominative	-o Σ	-oc	-or ${ }^{1}$	-u
Accusative	-on ${ }^{2}$	-ar	-en	-a Φ.
Dative	-os ${ }^{3}$	-ocp	-erp	-as
Genitive	-el	-acel	-il	-еФ.
Locative	-ecp	-ecp	-acp	-есеФ.
Instrumental	-els	-elpa	-ils	-eФ.os
Abessive	-ema	-enva	-ima	-elce Φ.
Semblative	-ot	-octos	-ot	-ocp

Table 13.15: Participle form inflections for species II_{4} (terrestrial endings). In this case, Λ is always 【o】.
${ }^{1}$-es when Σ is $\llbracket r \rrbracket$.
${ }^{2}$-an when Σ is $\llbracket n \rrbracket$.
${ }^{3}$-op when Σ is $\llbracket s \rrbracket$.

Species II $_{3}$

In species II_{3}, the stem is followed by the rcase infix, which come in two sets: $\mathbb{[}$-es- -est- -ist--ens- -ent- -int- \rrbracket (s-INFIXES) and $\llbracket-$-ev- -eft- -ift- -env- -enf- -inf- \rrbracket (v-infixes).

The rcase infix is then followed by the hcase-hnumber suffix (Table 13.16). The generichnumber forms are identical to the singular-hnumber forms.

Hcase \Hnumber	Sg．／Gc．	Dual	Plural
Nominative	－a	－ac	－o
Accusative	－an	－or	－on
Dative	－as	－acp	－os
Genitive	－en	－er	－in
Locative	-al	－al	－al
Instrumental	－ap	－ap	－op
Abessive	$-\mathrm{af} /-\mathrm{ał}$	$-\mathrm{af} /-\mathrm{ał}$	－ef／－eł
Semblative	－et	－ecp	－it

Table 13．16：Hcase－hnumber suffixes for species II_{3} ．

The abessive－hcase suffixes use $\llbracket f \rrbracket$ for the s－infixes and $\llbracket 1 \rrbracket$ for the v－infixes．

13．6．3 Genus III

Genus I participles distinguish rcase and hcase．The forms with singular hnumber also distin－ guish hgender；otherwise，both hnumber and hgender are unspecified．

Species III $_{2}$

Species III_{2} specifies only the forms in which the rcase is accusative or dative（Table 13．17）． The rest are derived from these as such：
－Infix 【－en－】 between the stem and the ending of the accusative－rcase form to get the respective forms with nominative rcase．If the ending starts with $\llbracket e \rrbracket$ ，in which case infix 【－an－】 instead．
－Infix $\llbracket-\mathrm{il}-\rrbracket$ between the stem and the ending of the accusative－rcase form to get the respective forms with genitive－of－nominative rcase．
－Infix $\llbracket-a g-\rrbracket$ between the stem and the ending of the accusative－rcase form to get the respective forms with genitive－of－accusative rcase．However，the infix is $\llbracket-\mathrm{ab}-\rrbracket$ for the locative－hcase forms．
－Infix 【－eg－』 between the stem and the ending of the dative－rcase form to get the respec－ tive forms with genitive－of－dative rcase．

Hnumber	Singular		Other	
Hcase \backslash Hgender	Celestial	Terrestrial	Human	-
Accusative rcase				
Nominative	-ar	-on	-ar	-als
Accusative	-an	-anon	-an	-alna
Dative	-arp	-os	-as	-arp
Genitive	-en	-el	-en	-il
Locative	-eca	-ecos	-eac	-ego
Instrumental	-eli	-els	-eli	-ili
Abessive	-eno	-enos	-eno	-ene
Semblative	-et	-ot	-est	-et
	Dative rcase			
Nominative	-or	-eћon	-or	-els
Accusative	-aћon	-onon	-aћon	-ana
Dative	-orb	-eћos	-orp	-orp
Genitive	-in	-il	-in	-in
Locative	-oca	-ecos	-avac	-avo
Instrumental	-ore	-ore	-ore	-ori
Abessive	-one	-one	-one	-onep
Semblative	-aћet	-aћot	-aћest	-aћet

Table 13.17: Participle form inflections for species III_{2}.
In addition, the R stem is used for both nominative and accusative rcases.

13.7 Converbs (adverbial forms)

Converbs are divided into two categories:

- Reduced coordination: the actions referred to by the converbal clause and the main clause are separate.
- Emergent coordination: the actions referred to by the converbal clause and the main clause form a larger action as a whole.

In both of these categories, the converbal clause and the main clause might not match in subject, but in that case, it must be made clear that the respective subjects are different.

Often, such a mismatch occurs because a non-subject argument in the converbal clause should become the subject in the main clause. If this is not already clear, then the clitic 〈='ul〉 can be used on the argument in the converbal clause to mark that it is also the subject of the main clause.

Sometimes, the subject in the converbal clause should not be the subject of a main clause. If this is not otherwise clear, then the clitic $\langle=$ 'els \rangle can be used on the converb to make it so.

In addition, Narâp Crîp has so-clauses, which also act adverbially.

Operation \Infinitive ending	－at	－it
X and Y	－ame	－ime
X or Y（inclusive）	－age	－ige
X or Y（exclusive）	－are	－ire
X to some and Y to others	－amec	－imec

Table 13．18：Affixes on the converb for reduced conjunction，where X is the statement stated by the converbal clause and Y the statement stated by the main clause．

13．7．1 Reduced coordination

In reduced coordination，the converb is formed through an affix on the verb stem indicating the conjunction in question instead of the usual conjugation：

After an onset containing a voiced obstruent，the 【－age】 and 【－ige】 affixes become 【－ahe】 and \llbracket－ihe】，respectively．After an onset of $\llbracket \mathrm{m} \rrbracket$ ，affixes beginning with \llbracket－ame－】 and \llbracket－ime－】 have these replaced with \llbracket－ase \rrbracket and \llbracket－ise \rrbracket ，respectively．

13．7．2 Emergent coordination

In emergent coordination，the final $\llbracket-\mathrm{t} \rrbracket$ of the infinitive form of the first verb is replaced with $\llbracket-\mathrm{rb} \rrbracket$ if the onset of the following word is either null or a plosive alone，or $\llbracket-\mathrm{p} \rrbracket$ otherwise． （Note that the operation is necessarily＂and＂．）

For the verb 〈minait〉 be alone，the final vowel is changed to $\llbracket \mathrm{e} \rrbracket$ ．
The use of emergent coordination can be seen as a serial verb construction．

13．7．3 So－clauses

So－CLAUSES are adverbial clauses consisting of a finite verb phrase followed by a conjunction such as \langle so \rangle ，called the SO－PARTICLE：
－〈A so B\rangle ：if A ，then B ，with emphatic form 〈sono〉．Can be combined with the clitic 〈＇moc〉 to mean even if or even though．Also used to express correlative comparisons when the main verbs of both A and B are differentiated with respect to the same variable．
－$\langle\mathrm{A}$ fose B\rangle ：because A, B ．In other words， A is the cause and B is the effect．
－$\langle\mathrm{A}$ dôm B$\rangle: B$ to the extent that $A ; B$ so much that A ．That is， A is the result of B ．

13．8 Nominalized forms

Table 13.19 lists the nominalized forms of a verb by case and mood．
In the nominative case，the particle $\langle 0\rangle$ is optional but may be retained for clarity．
The mood distinction encodes a difference in modality in the dative and semblative cases only．In the locative，instrumental，and abessive，it encodes a distinction between adverbial and adnominal forms．

In the dative case，the indicative mood is used for realis actions，as well as general activities：

Case \backslash Mood	Indicative	Subjunctive
Nominative	o $\mathrm{I} \Theta \mathrm{t}$	-
Accusative	on $\mathrm{I} \Theta \mathrm{t}$	-
Dative	$\circ \mathrm{Iilt}$	$\circ \mathrm{Ii} \Phi_{\mathrm{I}} \mathrm{os}$
Genitive	-	en $\mathrm{I} \Theta \mathrm{t}$
Locative	$\bullet L e v e$	sa $\bullet \Theta \mathrm{t}$
Instrumental	$\bullet L e v e c a$	sec $\bullet \Theta \mathrm{t}$
Abessive	$\bullet L e v e p a$	sep $\bullet \Theta \mathrm{t}$
Semblative	it $\mathrm{I} \Theta \mathrm{t}$	eti $\mathrm{I} \Theta \mathrm{t}$

Table 13.19: Nominalized forms by case and mood.
(22) šinaf d•endilt idesa neman racru.

šin-af	$d \cdot e n d-i l t$	i-desa	nem-an racr-u.	
all-NOM.GC	hunt-INF.DAT	ADN-below	some-ACC.sG	know-3GC

Everybody knows (something) about hunting.

The subjunctive mood, of course, indicates irrealis actions. A similar distinction exists for the semblative case.

Some of the nominalized forms are made of a particle plus the infinitive form, possibly mutated.
(23) on mêgennančat triłepjô.

```
on mê<genna>nč-at trit-e-pjô.
INF.ACC eat<DDT.REC>-INF recommend-1SG-1DU.INCL
```

I suggest to us to eat more slowly.
(24) elep šileifos mîrm•oru.
$\begin{array}{lll}\text { el-ep } & \text { šile-ifos } & \text { mîrm-or-u. } \\ \text { sun-NOM.SG } & \text { shine-INF.DAT.SUBJ } & \text { predict-3GC }\end{array}$
It is predicted that the sun will shine.
(25) cbereve elnat łanes.
cher-eve eln-at tan-es.
write-INF.LOC neat-INF must-2sg
When you write, you must do it neatly.
In such a nominalized form of an auxiliary verb, the particle also precedes all other verbs in the auxiliary chain. In such a nominalized VP of a non-auxiliary verb, the last word of a
noun phrase attached to it may be moved between the particle and the infinitive. In this case, the moved word takes the same mutation that the infinitive would.

When a nominalized VP in the locative, instrumental, or abessive case is an object of a modifying relational, the nominative forms are used.

A pronominal subject of a nominalized VP is marked using a possessive clitic on the infinitive:
trecai v-alilt'pe nîs faras miłersos nostecpis.

trec-ai	$v \cdot a l-$ ilt='pe	nis	far-as	miters-os
field-LOC.PL	reside-INF.DAT=POSs. 1	through	often-LOC.DI	pasture-LOC.PL
nos-t-ecpis.				
walk-PAST-1PL.EXCL.INV				

During our residence in the country we often walked in the pastures.
(27) anop varmjoneve'pe intaras môvarp sarћi menap.

```
an-op varmjon-eve='pe intar-as môv-arb sar\hbar-i
sky-dAT.SG observe-INF.LOC=POSs.1 void-loc.SG float-REL.ACC,DAT.CEL thing-dAT.SG
    men-a-p.
    see-1sG-PAST
```

When I looked into the sky, I saw something floating in the air.

Like participles, nominalized verbs can take object affixes before the verb stem. The vitreous set is used regardless of material. Mutations apply to the start of the word, not to the start of the stem: $\langle\mathrm{p} \cdot \mathrm{emečilt} \mathrm{\rangle}$, not *$\langle\mathrm{pem} \cdot \mathrm{ečilt}\rangle$. As usual, an object prefix that would be eclipsed is lenited instead: $\langle p$ •emičeve \rangle, not *〈vpemičeve〉. Object affixes occasionally stand in for nominative arguments; in this case, the singular set is always used.

The genitive-case nominalized form is sometimes used to form another type of relative clause, especially when the common argument in the embedded clause is an oblique argument. This use is chiefly informal, with the participle form (perhaps in an applicative voice) being preferred in formal language.

13.9 Irregular verbs

The conjugation of most verbs can be derived from at most seven principal parts. Nevertheless, a few verbs are truly irregular.

13.9.1 APN-irregular verbs

As the name suggests, APN-IRREGULAR VERBS specify finite forms according to aspect (relative to tense), person, and number. All APN-irregular verbs are vitreous; object suffixes apply as usual, while the past suffix is always $\llbracket-\mathrm{p} \rrbracket$ or $\llbracket-\mathrm{ta} \rrbracket$ - that is, P^{t} is never used.
epit, ve, velta, verła, verłena, veprapos, gispeve, ...

Person \backslash Number	Singular	Dual	Plural	Generic
Direct aspect				
1st excl.	ve	ven	vjap	vef
1st incl.		veac	vea	
2nd	ves	vesen	vełar	vełaf
3rd	veła	vełan	von	ver
Inverse aspect				
1st excl.	vel	vins	vjapis	vesif
1st incl.		veacel	varel	
2nd	verp	vinse	veris	vełesaf
3rd	vełal	vełans	veron	vros

Table 13.20: Conjugation of epit, ve, velta, verła, verłena, veprapos, gispeve, ..., listing the irregular finite forms.
esepit, efa, efap, esperła, esperłena, espebrapos, gedispeve, ...

The forms of this verb, which is the inchoative form of \langle epit \rangle, are independent of aspect.

Person \backslash Number	Singular	Dual	Plural	Generic
1st excl.	efa	eson	esop	esef
1st incl.		iste	ise	
2nd	sos	essen	esołar	esaf
3rd	esoła	esołan	espo	eris

Table 13.21: Conjugation of esepit, efa, efap, esperła, esperłena, espeprapos, gedispeve, ..., listing the irregular finite forms.
telit, ce, celta, cerła, cerłena, cirłapos, dtołeve, ...

Person \backslash Number	Singular	Dual	Plural	Generic			
Direct aspect							
1st excl.	ce	cen	čap	cef			
1st incl.		cjor	cea				
2nd	ces	cesen	cełar	cełaf			
3rd	ceła	cełan	cpon	cir			
Inverse aspect							
1st excl.	cel	cins	čapis	cesif			
1st incl.						tacel	cjarel
2nd	cerp	cinse	ceris	cełesaf			
3rd	cełal	cełans	cepen	cparos			

Table 13.22: Conjugation of telit, ce, celta, cerła, cerłena, cirłapos, dtołeve, ..., listing the irregular finite forms.
varit, tan, ovep, saltan, salteši, sortapon, voreve, ...

Person \backslash Number	Singular	Dual	Plural	Generic
Direct aspect				
1st excl.	tan	tar	tare	tanfe
1st incl.		târ	târe	
2nd	tas	tasen	tai	tasfe
3rd	teha	tehan	tejen	toru
Inverse aspect				
1st excl.	ove	ovins	ovicp	oveł
1st incl.		orins	oricp	
2nd	opres	ovesis	overis	overeł
3rd	ovel	ovens	ovelt	voris

Table 13.23: Conjugation of varit, tan, ovep, saltan, salteši, sortapon, voreve, ..., listing the irregular finite forms.
nepit，nea，nepelta，nelpa，nelpeta，nolpapos，nolpeve，．．．

Person \backslash Number	Singular	Dual	Plural	Generic
Direct aspect				
1st excl．	nea	nean	nepacp	nêf
1st incl．		nefên	nepâcp	
2nd	nepas	nepans	nepar	nepał
3rd	nae	nepan	nepo	nepu
Inverse aspect				
1st excl．	nepel	nenfe	nencpis	nêf
1st incl．		nenfôr	nencpîs	
2nd	nefras	nefrast	nefris	nepał
3rd	naeł	naens	nares	nepos

Table 13．24：Conjugation of nepit，nea，nepelta，nelpa，nelpeta，nolpapos，nolpeve，．．．，listing the irregular finite forms．

13．10 Interactions with predicate modifiers

13．10．1 Comparatives

Given a verb，the derived verb prefixed with $\llbracket \operatorname{mir} \Delta-\rrbracket(\llbracket ł a \Delta-\rrbracket)$ means＇（S）performs the action in question to a greater（lesser）degree than（O）by a margin of（I）＇：
（28）mirvesralo．
mir－vesr－a－lo．
cMP－strong－1sG－3PL
I am stronger than they are．
If the base action mentions a direct or indirect object，then the argument is retained in the clause eclipsed：

```
\#môra \#sapon giviner ârebpas mirm•ečap.
\#môr-a \#sab-on g\ivin-er â-reppas
```



```
    mir-m.eč- \(a-b\).
    cMP.GT-find-3SG-PAST
```

\#môra found four more mushrooms than \#sapo.

The verbs 〈mirit〉 greater than and 〈łavrit〉 less than also exist．
Equal comparisons are formed by using the relational 〈peyan〉 whose object is the noun phrase to which another，of the same case，is being compared：
\#môra \#sapo peyan vadanor mečap.
\#môr-a \#sap-o peŋan vad-anor meč-a-b.
nAME-NOM.SG NAME-NOM.SG CMP.EQ tuber-ACC.PL find-3sG-Past
\#môra found as many tubers as \#sapo.
Superlatives are formed using the relational 〈î̀〉, which takes a genitive object:

```
#môra rascen îb raga.
    #môr-a rasc-en îp rag-a.
NAME-NOM.SG family-GEN.SG sup tall-3sG
#môra is the tallest in their family.
```


13.10.2 Voice

The default voice is the active voice. There is no passive voice in Narâp Crîp because the subject may be omitted instead:

```
+tjare siljes šeprob.
+tjar-e silj-es šepr-op.
(name)-Acc.sG afternoon-loc.SG execute-3GC.pAST.PFV
+tjaris was executed in the afternoon.
```

```
rešitas tfoson elens'po fêtecto gcemup.
```

rešit-as tfos-on el-ens='po fề-tecto g|cem-u-p.
cloak-dAT.SG cross_parent-ACC.SG year-ACc.SG=SEP 3GC-before PFV\give-3sG-PAST

The cloak was given to my (mother/father) a year ago.

The causative voice

The causative voice is formed by prefixing \llbracket do- \rrbracket. It adds a 'cause' argument to the verb as the subject, changing its valency.

- In an intransitive or semitransitive verb, the old subject becomes the direct object, making it transitive or ditransitive.
- In a transitive verb, the old subject becomes the direct object, and the old object becomes the indirect object, making it ditransitive.
- In a ditransitive verb, the old subject becomes the direct object, the old object becomes the indirect object, and the old indirect object becomes the object of the relational $\langle\mathrm{ro}\rangle$, making it a ditransitive verb with one additional oblique argument.
- Auxiliary verbs simply delegate to their targets.

The causative prefix can function either as an inflectional affix or a derivational one：
（34）ša entas gðenic＇ve ndoelpanvep？

Did your parents make you wear that？
（35）le jonas tê vrêman docjašas．
le jon－as tê vrêm－an do－cjaš－as．
IMP now－LOC．DI that．cEl book－ACc．sG caus－fall－2sG
Drop that book right now．
When two consecutive causative prefixes are added to a verb，then they take the form【reld•o－】：
（36）efrep têrmasor reld•odranlêta．
efr－ep têrm－asor reld•o－dranl－ta．
commander－Nom．SG hostage－dat．pl caus．caus－die－3sG．PASt．PfV
The commander ordered the hostages to be killed．
Note that 〈têrmon〉 is in the dative case．If it were in the accusative case instead，then the meaning would be different：
（37）efrep têrmanor reld odranlêta．
efr－ep têrm－anor reld•o－dranl－ta．
commander－Nom．SG hostage－ACC．pl caus．caus－die－3sG．PASt．pFV
The commander ordered the hostages to kill．
In addition，the causative prefix and a terminative prefix 【ero－】 immediately following it fuse into 【daro－】：
（38）mêva lê gedesos niðes ndarc－atlepep．
mêv－a le gledes－os nið－es n\dar－c•atl－e－pe－p．
rain－NOM．CO this．CEL assignment－DAT．SG early＿time－LOC．DI CAUS．PFV
I finished the assignment early because of the rain．

The applicative voices

Narâp Crîp has various applicative voices，which promote an oblique adjunct（either a noun phrase in a non－core case or an adverbial relational phrase）to the dative case．The former dative argument，if present，is demoted to where the oblique was．

The applicative voices are primarily used to relativize an oblique argument by promoting it into the dative case．

Case or relation	Prefix
Locative	si-
Instrumental	ca-
Abessive	pa-
Semblative	
hit-	
ar	la-
jas	sa-
nîs	na-
uc	ћic-
roc, rille	tar-

Table 13.25: Applicative prefixes in Narâb Crîb
(39) melco pecacatlepanon om inorelt clačirp osjas \&taran rema pal!

melc-o	pe-ca-catl-epanon	om	inor-elt	
parallel_parent-nOM.SG	1SG-APPL.INST-hit-REL.DAT,ACC.TER	that.TER	stick-ACC.sV	
clač-irp	os-jas	\&tar-an	rem-a	pal!
break-SER	3SG.TER-from	woodchip-ACc.co	make-1SG ASSERT	

I'll break that stick my (dad/mom) hit me with and turn it into woodchips!
(40) \#mjôras sieristepo \#flirora cadils nelsit ћarte.

\#mjôr-as	si-erist-epo	\#fliror-a	cad-ils
(name)-LOC.sG	APPL.LOC-meet-REL.DAT,DAT.CEL	(name)-NOM.SG	
island-dAT.SG			

\#flirora went once more to the island where they met \#môra.
They are also used to make an oblique argument a shifted subject of an auxiliary verb or relational:
(41) artfotepa panelsit pečit rjotilesta.

```
artfob-epa pa-nels-it peč-it rjot-i-les-ta.
city-ABESS.SG apPL.ABESS-go-INF avoid-INF fail-3pl-3sG.HUM-PAST
```

She couldn't stop them from going to the city without her.
(42) eltin šimerin cpîšari fones alals âya cpîfsocon siveła.

elt-in	šim-erin	chîš-ecp	fion-es	al-als	âya
river-GEN.SG	end-Acc.sg	near-Rel.nom,Loc.sG	place-loc.sg	east-dat.di	bending
cbîfsoc-on		-veta.			
acute_angl	le-nom.sG A	Pl.Loc-exist.3sG			

Near the mouth of the river, its course turns sharply towards the East.

Flavor \backslash Force	Necessity	Non-necessity	Possibility	Impossibility	Probability
Situational	marðat		pentat	rjotat	
Dynamic		pentat	geðat		
Facultative			racfit	cricpit	
Deontic łanat rečit sarait					
Conscientious			neћrit	velrjotat	
Epistemic	vrasit cenmirat		parat		lerjat

Table 13.26: Modal auxiliaries in Narâb Crîb.

In (41) and (42), the dative argument is understood to be the shifted subject by the use of the applicative.

13.10.3 Auxiliary verbs

The verb modified by an auxiliary verb is called its target, which appears in the infinitive form immediately before the auxiliary verb. The particle \langle fel \rangle can stand in place of a target if one is not specified. In addition, the target of an auxiliary verb can be an auxiliary verb itself, with its own target ad infinitum.

A clause using an auxiliary verb may select a SHIFTED SUBJECT ((Š)) among the nominative, accusative, and dative arguments. The shifted subject may have a special role in the meaning of an auxiliary verb, such as carrying the volition for the performance or nonperformance of the target action.

An auxiliary is positive definite (negative definite) if the truth of the action or state described implies that the action or state described by the target is true (false). It is indefinite if neither such implication holds.

Modal auxiliaries

Modal auxiliaries can be classified by their force and flavor. Narâb Crîp distinguishes the following flavors:

- Situational: according to the situation at hand
- Dynamic: according to the abilities of (Š)
- Facultative: according to the knowledge of (Š) to perform (T)
- Deontic: according to some set of norms
- Conscientious: according to the conscientious beliefs of (Š) (i.e. whether (Š) has a conscientious objection against performing or not performing a certain action)
- Epistemic: according to beliefs inferred through other information

The modal auxiliaries of Narâb Crîb according to this classification is shown in Table 13.26 There are a handful of modal auxiliary verbs that do not fit neatly into the grid above:
－〈gevat＞：used in questions to make a request
－\langle rendat \rangle ：desiderative $=(\check{S})$ desires that (T) happens．
－\langle fonat $\rangle:$ negation of \langle rendat $\rangle=(\check{S})$ has no desire for (T) to happen
－\langle verat $\rangle:$ volitive $=(\check{S})$ intends to (T)
－\langle senlat $\rangle=(\check{S})$ attempts to (T) ；also（Š）intends to (T)

Degree auxiliaries

Degree auxiliaries show the extent to which the target action or state holds：
－\langle šonat $\rangle=(T)$ is done completely
－\langle iširit $\rangle=(T)$ is true at least slightly
A subset of degree auxiliaries are negative auxiliaries，which are used to negate the target in some way．Negative auxiliaries are necessarily negative definite，while other degree auxiliaries are positive definite．
－\langle pečit〉 $=($ Š $)$ avoids inadvertently doing（ T ）（i．e．the volition belongs to（Š））
－\langle tersat $\rangle=(S ̌)$ insists against doing (T)
－\langle garit $\rangle=(S ̌)$ stops oneself from doing (T)
－〈vandrit〉＝（Š）leaves something uninvolved in an action（ T ）
－\langle selcit $\rangle=(\check{S})$ knowingly fails to fulfill their responsibility or obligation to do (T)
－\langle anðat $\rangle=(T)$ has not yet occurred

Aspectual auxiliaries

Other auxiliary verbs indicate aspect．Most such auxiliaries are positive definite．

- 〈ћarat〉＝(T) is done again；(T) is done to a further degree than previously mentioned
- 〈nevlat〉＝（Š）does（T）repeatedly
－\langle antit $\rangle=(\check{S})$ does (T) in response to an earlier action against them
－\langle nespat $\rangle=(\check{S})$ does (T) habitually
－\langle denecit $\rangle=(S ̌)$ continues to (T)
－$\langle\mathrm{vespat}\rangle=(\check{S})$ does (T) for the first time in a long time
－\langle cagesit $\rangle=(\check{S})$ does (T) for the first time in such a long time that the speaker does not remember when it last happened
－$\langle\mathrm{ennelit}\rangle=(\check{S})$ has done (T) as a result of actions over a long time

Form	Gloss	Nominative $(=($ Š）$)$	Accusative	Dative
is	ROT0	(S)	(O)	(I)
pa○	ROT1	(O)	(I)	(S)
jâ	ROT2	(I)	(S)	(O)

Table 13．27：The rotarg particles．

Others

－$\langle\mathrm{vjełat}\rangle=($ Š）has the character of doing（ T ）

－〈glanpit $\rangle=(T)$ occurs at a monetary cost to（̌̌）

Explicitly specifying the shifted subject

Although the shifted subject is usually clear from the context，it is sometimes necessary to specify explicitly which argument it is．The rotarg particles can be used immediately before the target of an auxiliary verb in order to assign each of（S），（O），and（I）to the nominative， accusative，and dative cases，specifying the nominative－case argument to be（Š）．

For instance，〈cengrit〉 is glossed as（S）throws（O）at（I）－that is，（S）refers to the thrower， （O）refers to the object being thrown，and（I）refers to the target toward which it is thrown． In 〈is cengrit〉，the thrower is specified in the nominative case，the object thrown is in the accusative，and the target in the dative；thus，it can be glossed as (S) throws (O) at（ I ）with the constraint that（S）will be the same as the（ \check{S} ）for an auxiliary verb．

In \langle pa c•engrit〉，the thrower is specified in the dative case，the object thrown is in the nominative，and the target is in the accusative．This phrase can be glossed as（I）throws（S）at (O) and would be used as the target of an auxiliary verb if（Š）should refer to the object being thrown．

Likewise，in 〈jâ gcengrit〉，the thrower is specified in the accusative case，the object thrown is in the dative，and the target is in the nominative．This phrase can be glossed as (O) throws （I）at（S）and would be used as the target of an auxiliary verb if（Š）should refer to the target at which something is thrown．

13．11 Modality

Most verb forms can be used in both realis and irrealis contexts：
（43）eši mêvan têmit har．
eši mêv－an têm－it $\hbar a r-\varnothing$ ．
here．loc．dI rain－Acc．co precipitate－inf do＿again－3sg
It is raining here again．
enven sodas mêvan têma so mîpanelên.

$$
\begin{array}{lllll}
\text { env-en } & \text { sod-as } & \text { mêv-an } & \text { têm- } a & \text { so mîbanel-ên. } \\
\text { day-GEN.SG } & \text { next-LOc.SG } & \text { rain-ACC.CO } & \text { precipitate-3SG } & \text { if play_mîpanela-1DU.INCL }
\end{array}
$$

If it rains tomorrow, we'll play mîpanela.
vesro avona celcorin ndofonrap.

vesr-o	avon-a	celc-orin	$n \backslash$ do-fonr-a- p.
strong-REL.NOM,NOM.SG	wind-NOM.DI	building-ACC.SG	PFV\CAUS-collapse-3SG-PAST

The strong wind caused the building to collapse.
(46) yepriłir vesrelta so fonrit vpečap vibca.

neprit-ir	vesr-el-ta	so fonr-it	$v \backslash p e c ̌-a-p$	$v i p c a$.	
support-NOM.DI	strong-3SG.INV-PAST	if	collapse-INF	PFV \backslash avoid-3sG-PAST	COND

If the supports were stronger, then it would not have collapsed.

The exception to this property are the dative- and semblative-case nominalized forms (Section 13.8), which have separate indicative and subjunctive forms.

The following sections cover modalities that are not covered by auxiliary verbs (Subsection 13.10.3).

13.11.1 Imperative

Imperative sentences are formed using the headp $\langle\mathrm{le}\rangle$. The verb in the main clause is conjugated as usual, except that the aspect is always imperfective. In addition, resinous verbs have special forms for second-person singular subjects.
(47) le enven saden cintos reftos etor cehas.

le env-en	sad-en	cint-os	reft-os	etor	ceh-as.
IMP	day-GEN.SG	next-GEN.SG	morning-LOC.SG	library-DAT.SG	in_front_of
arrive-2SG					

Arrive in front of the library tomorrow morning.
(48) le cupas jorniłtau.
$\begin{array}{ll}\text { le cup-as } & \text { jornit-pau. } \\ \text { IMP } & \text { immediately-LOC.DI stand-IMP.2SG }\end{array}$
Stand up immediately.

When used with a first-person verb, 〈le〉marks the hortative. In this case, the subject ending of the main verb is always put in the first-person exclusive, regardless of the actual clusivity of the subject, unless the verb is followed by a tailp.
（49）le nêrgim opena dofenran．
le nêrgim－op－ena do－fenr－an．
IMP living＿room－ACC．SG CAUS－clean－1DU．EXCL
Let＇s clean the living room．
（50）le nelsâcb pal！
le nels－âcb pal！
imp go－1pl．INCl ASSERT
Let＇s go！
To command the listener to take a non－subject role of a verb，the verb 〈menat〉（S）sees， makes sure of（I）is used．
（51）le felja reflit p •ečiłos menes．
$l e$ felj－a refl－it p－eč－itos men－es．
IMP this＿idea－nOM．SG surprise－INF avoid－Inf．DAT see－2SG
Don＇t be surprised by this idea．

13．11．2 Conditional

Conditional sentences are formed using the tailp 〈vipca〉：
（52）šinen ðês lârne cermjôri visêrče vibca．
šin－en dês lâr－ne cermjôr－i visêrč－e vipca． all－GEN．SG occurrence－Loc．sG cat－Acc．SG dog－dat．SG choose－1sG cond I would always choose a dog over a cat．

Chapter 14

Relationals

In this chapter, we cover relationals.

14.1 Valency and case frame

All predicates have at least a nominative-case argument (the subject). Most relationals are divalent; the second argument (the овјест) is dative by default.

Some relationals, such as $\langle\mathrm{tfel}\rangle(S)$ is on the other side of (O) relative to $\left(O^{\prime}\right)$, are trivalent. In this case, one of the objects is termed the main object and the other is called the ancillary овјест. In divalent relationals, of course, the main object is the only one involved.

If a relational encodes a spatial relationship between one entity and another, then two additional relationals (relationals of motion) are derived: one encoding motion toward the main object (in which case the main object is accusative) and another encoding motion away from the main object (in which case it is dative for third- and sixth-declension nouns and abessive otherwise, although in colloquial language, the locative may be used instead).

When a fifth-declension noun is the object of the relational 【es】 (S) is contained inside (O); (S) is in progress of doing (O) (in static motion), it is inflected in the locative case rather than the dative.

14.2 Attachment and relational bias

A relational can be used adnominally or adverbially, that is, modifying either a noun phrase or a verb phrase. We call this distinction attachment. Adnominal usage simply places the affected noun phrase as the subject of the action depicted by the relational. Adverbial usage, on the other hand, does one of the following: (1) place the action depicted by the VP as the subject of the relational, (2) indicate that as a result of the action, a shifted subject of the VP starts to participate as a subject of the relational.

All relationals have a BIAs toward either adnominal or adverbial attachment. A relational with adnominal bias takes its lemma form when modifying a noun phrase but changes form when modifying a verb phrase. Conversely, a relational with adverbial bias takes its lemma form when modifying a verb phrase but changes form when modifying a noun phrase.

Relationals of motion always have adverbial bias, even when the base relational has adnominal bias.

14．3 Inflection

Each relational is in either the celestial or terrestrial gender and has an absolute（A）and a conjunct（C）form．The absolute form is a stem，while the conjunct form is a sequence of one or more simple syllables．

14．3．1 Modifying forms

The anatomy of a modifying form is［＜object prefix＞］＋＜absolute stem＞＋［＜cast suf－ fix＞］＋［＜motion suffix＞］for celestial relationals and［＜cast prefix＞］＋［＜object prefix＞］ + ＜absolute stem＞＋［＜motion suffix＞］for terrestrial relationals．

For celestial relationals，the cast suffix is used if the relational has the wrong bias for its usage．It is 【－en】 when an adverbially biased relational is used adnominally，and it is $\llbracket-\mathrm{al} \rrbracket$ when an adnominally biased relational is used adverbially．These are changed to $\llbracket-\mathrm{n} \rrbracket$ and to $\llbracket-1 \rrbracket$ when immediately followed by a vowel of the same quality．

Likewise，the cast prefix is used for terrestrial relationals in the same situation．It is $\llbracket \mathrm{i}-\rrbracket$ when an adverbially biased relational is used adnominally，and it is 匹as－】 when an adnominally biased relational is used adverbially．

The object prefix is like the object affix in verb conjugation；in other words，it is used if the object is pronominal．Nevertheless，it has different forms：

Person \Numbe	Singular	Dual	Plural	Generic
1st excl．	e（l）－	ec－	en－	ef－
$1 \mathrm{st} \mathrm{incl}$.		êc－	ên－	
2nd	o－	oc－	on－	of－
3rd celestial	er－			
3rd terrestrial	os－			
3rd human	an－	or－	ran－	
3rd epicene		ac－	ren－	fê（s）－
Reflexive	ce（n）－			
Reciprocal	re（b）－			

Table 14．1：Object affixes．
（The consonants in brackets are included only if the absolute stem starts with $\llbracket \mathrm{e}-\rrbracket$ or $\llbracket \mathrm{e}-\rrbracket$ ．）
On relationals of motion，a motion suffix can be added to denote motion．The suffix for motion toward something is usually 【－ar】，but when the absolute stem ends with $\llbracket a \rrbracket$ or $\llbracket \hat{a} \rrbracket$ and the cast suffix $\llbracket-e n \rrbracket$ is absent，then the tone of the final vowel is inverted and $\llbracket-\mathrm{r} \rrbracket$ is attached．

The suffix for motion away from something can be either $\llbracket-\mathrm{es} \rrbracket$ ，$\llbracket-\mathrm{as} \rrbracket$ ，or \llbracket－jas \rrbracket ：
－It is always 【－as】 if the form has the cast suffix 【－en】．
－Otherwise，if the absolute stem ends in a vowel，then it is always $\llbracket-\mathrm{jas} \rrbracket$ ．
－Otherwise，if the last syllable of the absolute stem has an «e】 or 【ê】，then it is always【－as】．
－Otherwise，if the last syllable of the absolute stem has an $\llbracket a \rrbracket$ or $\llbracket \hat{a} \rrbracket$ ，then it is always【－es】．
－Otherwise，it is $\llbracket-\mathrm{es} \rrbracket$ if bit 1 of the letter sum of the preceding letters is set and \llbracket－as】 if it is unset．

In trivalent relationals，the ancillary object affixes occur at the end of the relational．If there is no cast or motion suffix，then such a suffix occurs at an onset end：

Person \Number	Singular	Dual	Plural	Generic
None	－（e）s			
1st excl．	－ef	－ecp	－if	－af
1st incl．		－êcp	－îf	
2nd	－or	－ocp	－orp	－of
3rd celestial	－ir			
3rd terrestrial	－jos			
3rd human	－aren	－oł	－ens	
3rd epicene		－ac	－erp	－\varnothing
Reflexive	－ef			
Reciprocal	－iren			

Table 14．2：Ancillary object affixes（for onset ends）．

Otherwise，the ancillary object suffix occurs at a syllabic end and a different set of suffixes is used：

Person \backslash Number	Singular	Dual	Plural	Generic
None	－（e）s			
1st excl．	－ef	－ecp	－if	－af
1st incl．		－êcp	－if	
2nd	－or	－ocp	－orp	－of
3rd celestial	－ir			
3rd terrestrial	－jos			
3rd human	－ran	－lor	－ren	
3rd epicene		－ac	－erp	－\varnothing
Reflexive	－lef			
Reciprocal	－rin			

Table 14．3：Ancillary object affixes（for syllabic ends）．
（The suffix for an explicit ancillary object is $\llbracket-\mathrm{s} \rrbracket$ after a vowel or a $\llbracket-1 \rrbracket$ ．）
If both the main and ancillary objects are specified as noun phrases to an attributive rela－ tional，then the ancillary object is eclipsed and follows the main object．

14．3．2 Finite forms

A relational can be used predicatively using a finite form that attaches it to a scaffolding verb， either affirmative or negative．Thus the relational acts like a verb syntactically．

The anatomy of the finite form of a relational is［＜motion prefix＞］＋＜conjunct form＞ + ＜finite form of scaffolding verb＞．The scaffolding verb can be either 〈epit〉（for the affir－ mative）or \langle telit \rangle（for the negative）．

The motion prefix is $\llbracket a r-\rrbracket$ for motion toward something and $\llbracket a s-\rrbracket$ for for motion away from something．

The relational 〈es〉inside changes to 〈el〉 when in a finite form；likewise，〈car〉outside changes to 〈cap〉．

The object affix on the scaffolding verb refers to the main object in divalent relationals．In trivalent relationals，it refers to the main object by default，but if the main object is explicitly specified as a noun phrase，then the object affix refers to the ancillary object instead．

If the ancillary object is specified as a noun phrase，then it is preceded by the particle 〈os〉 and eclipsed．

If a relational is a target of an auxiliary，then the scaffolding verb contracts to 【－is】 for $\langle e p i t\rangle$ and \llbracket－ces \rrbracket for 〈telit〉．If such a relational previously governed the dative，then it now governs the accusative in this case．

14．3．3 Nominalized forms

The nominalized form of a verb describes the action referenced by the verb．In contrast，the nominalized form of a relational describes the subject involved in the state described．The resulting noun is a second－declension $\llbracket-\mathrm{er} \rrbracket$ noun（with $\Lambda=\llbracket \mathrm{e} \rrbracket$ ）for celestial relationals and a third－declension 【－os】 noun for terrestrial relationals．

Let B be the absolute form plus the motion suffix．Then if B contains only one full syllable and its final bridge consists of at most one consonant and no $\llbracket j \rrbracket$ ，then the N stem is 【Bal】，the L stem is either $\llbracket \mathrm{Bel} \rrbracket$ or $\llbracket \mathrm{Bil} \rrbracket$ ，and the S stem is $\llbracket \mathrm{Bal} \rrbracket$ ．In particular，the L stem is 【Bil】 if the last vowel in B is $\llbracket \mathrm{e} \rrbracket$ or $\llbracket \hat{\mathrm{e}} \rrbracket$ and $\llbracket \mathrm{Bel} \rrbracket$ otherwise．

Otherwise，if B ends with a vowel，then the N stem is $\llbracket \mathrm{Bs} \rrbracket$ and the S stem is $\llbracket \mathrm{Bd} \rrbracket$ ．The L stem is derived from the N stem by doing the following：
－If the final vowel is $\llbracket a \rrbracket$ or $\llbracket \mathrm{e} \rrbracket$ ，then change it to $\llbracket \mathrm{o} \rrbracket$ ．
－If the final vowel is $\llbracket 0 \rrbracket$ ，then change it to $\llbracket a \rrbracket$ ．
－If the final vowel has a low tone，then change it to high．
－Otherwise，change the final bridge to $\llbracket-s t-\rrbracket$ ．
If B has two or more full syllables and does not end with a vowel，then the N stem is $\llbracket \mathrm{B} \rrbracket$ ， and the S stem is $\llbracket B \rrbracket$ ．The L stem depends on the motion suffix：
－If there is no motion suffix，then the L stem is the conjunct form followed by 【1］．
－If the＇toward＇suffix would be used，then the L stem is $\llbracket A^{p} e r \rrbracket$ ，where A is the absolute stem before adding the motion suffix．
－If the away suffix would be used，then the L stem is $\llbracket A^{\dagger}$ as \rrbracket ．
A genitive on a nominalized form of a relational indicates the object of the state described．

14．4 Interactions with predicate modifiers

A noun phrase in the accusative case plus the clitic $\langle=' \mathrm{po}\rangle$ is a predicate modifier that acts on relationals implying separation between two objects（spatially or temporally）and describes the degree to which they are separated．For nouns that are units of measure other than 〈enva〉 or $\langle e l v a\rangle$ ，using the semblative case has the equivalent effect as $\langle=$＇po〉．

The particle $\langle p a ̂\rangle$ directly before a relational describing a spatial relationship can be trans－ lated as directly or precisely．With the relational 〈nîs〉 describing a span of time over which an action takes place，$\langle\mathrm{pa}\rangle$ implies that the action is continuous．

Prefixing 〈do－〉 to a relational switches the order of（S）and（O）；the gender，bias，and gov－ erned case are preserved．Such a relational is used only on an attributive or nominalized form． That is，the same prefix on a finite relational is interpreted as a causative prefix as usual．

14．5 A tour of relationals

This section gives an overview of the relationals of Narâp Crî̂．

14．5．1 Spatial relationals

Some words denoting such relations are verbs instead of relationals：
－$\langle\mathrm{ecljat}\rangle=(S)$ is far from（I）
－\langle cpîšat $\rangle=(S)$ is near (O)

14．5．2 Temporal relationals

Some words denoting such relations are verbs instead of relationals：
－\langle cjašit $\rangle=(S)$ begins at the time of (I)

14．5．3 Syntactic relationals

These relationals are used solely for syntactic support．
－$\langle r o\rangle$ marks the former indirect object when the causative voice is applied on a ditransi－ tive verb．

- 〈penan＞is used to mark the compared object in an equal comparison．
- 〈îp〉 forms the superlative．It is defined as（S）performs an action to the greatest extent in or among（O）．

14．5．4 Mathematical relationals

These relationals denote mathematical relations．
－$\langle\mathrm{ema}\rangle=$ other than，not equal to．Its antonym is the verb $\langle\mathrm{censit}\rangle$ ．
－\langle cor $\rangle=$ not one of．Its antonym is the verb \langle varit \rangle ．

Relational	Gloss
ar	toward
jas	away from
nîs	through
âja	bending toward
es	inside
car	outside of
il	on top of
sêna	above
čil	on (a vertical surface)
desa	below
etor	in front of
pon	in the midst of, in the middle of
cpar	around, surrounding
cparnîs	revolving around
mepos	taking a winding path around
fan	next to, beside
dełir	next to a body of water
nerła	between
tfel (3val)	across
lef	perpendicular to
fansêna	above by an offset

Table 14.4: Spatial relationals in Narâp Crîp.

Relational	Gloss
tecto	before
mîr	after
nîs	during, while

Table 14.5: Temporal relationals in Narâp Crîb.

Some words denoting such relations are verbs instead of relationals:

- \langle censit $\rangle=(S)$ is equal to (I)
- \langle varit $\rangle=(S)$ is one of (O)
- \langle mirit $\rangle=(S)$ is greater than (O) by a margin of (I)
- \langle łavrit $\rangle=(S)$ is less than (O) by a margin of (I)

14．5．5 Other relationals

－〈dêt〉：instead of
－\langle ton $\rangle:$ ornative $=(S)$ has (O) attached to it as a feature or accessory

- 〈vôr＞：(O) is abundant within（ S ）
- $\langle\mathrm{roc}\rangle$（becoming 〈rille〉 after the clitic $\langle=$＇moc \rangle ）＝on behalf of
－\langle nedo $\rangle=(S)$ happens in spite of (O)
－$\langle\mathrm{uc}\rangle=(S)$ resembles (O) in appearance，visually or otherwise
－$\langle m e s a\rangle$ and \langle rjas \rangle both translate to between．．．
- 〈cire〉：（S）has a price of（O）
- 〈lef〉，in addition to its spatial meaning，is used to mean unrelated to．
－$\langle\mathrm{es}\rangle$ ，in addition to its spatial meaning，is used for the progressive aspect．
－〈desa〉，in addition to its spatial meaning，is used to mean regarding or related to．

Part V

Lexicon

This part describes the various aspects of Narâp Crîp's lexicon.
In this section, many words will be given by lemma alone instead of their full headwords, which can be found in the dictionary.

Chapter 15

Numerals

Narâp Crîp has two sets of cardinal numerals: the long numerals and the short numerals.

Feature	Long numerals	Short numerals
Length	Long	Short
Range (within integers)	$1-16$	All integers
Agreement	Case and sometimes gender	None
Use of counter words	Not used	Usually required
Order relative to noun phrase	After the noun phrase, possibly separated	Immediately after the noun phrase
Orthography	Always spelled out	Spelled out or figures

Table 15.1: Comparison between long numerals and short numerals.

15.1 Long numerals

The long numerals up to 6 are inflected for case and gender (Tables 15.2 to 15.7).
The rest of the long numerals (Tables 15.8 and 15.9) are inflected for case only.

Case \backslash Gender	Celestial	Terrestrial	Human
Nominative	mina	minos	minal
Accusative	minan	minon	minan
Dative	minas	minop	minels
Genitive	minen	minen	minjel
Locative	monas	mjonos	monas
Instrumental	minca	cjamjonos	minca
Abessive	minpa	bjam•jonos	minpa
Semblative	menit	manot	menit

Table 15.2: The long numerals for 1.

Case \backslash Gender	Celestial	Terrestrial	Human
Nominative	nefa	nefor	nefac
Accusative	nefan	nefon	nefan
Dative	nefas	nefos	nefacp
Genitive	nefen	nefar	nefen
Locative	nofas	njofor	nofas
Instrumental	nefca	cjanjofor	nefca
Abessive	nefopa	bjanofor	nefocpa
Semblative	nefit	nefot	nefit

Table 15.3: The long numerals for 2.

Case \backslash Gender	Celestial	Terrestrial	Human
Nominative	prêno	prêngos	prêmo
Accusative	prênon	prêngon	prêmon
Dative	prênos	prênge	prêmos
Genitive	prênen	prêngel	prêmen
Locative	prônos	prôndos	siłas
Instrumental	prônca	cjaprôndos	cippiłas
Abessive	prônpa	pjap•rôndos	pilp.iłas
Semblative	prênit	prêngot	prêmit

Table 15.4: The long numerals for 3.

Case \backslash Gender	Celestial	Terrestrial	Human
Nominative	resip	sriel	resip
Accusative	resin	srilen	rešir
Dative	reppas	sriles	reppac
Genitive	resten	risil	resčor
Locative	risipas	ristos	risipas
Instrumental	rosicpa	cjaristos	rosicpa
Abessive	rosipa	bjaristos	rosipa
Semblative	redip	redot	redip

Table 15.5: The long numerals for 4.

Case \backslash Gender	Celestial	Terrestrial	Human
Nominative	glêma	glêmos	glêmac
Accusative	glêman	glêmon	glêmor
Dative	glêmas	glêmop	glêmecp
Genitive	glêmen	glîmel	glêmjor
Locative	glômas	glâmos	glômas
Instrumental	glômeca	cjaglêmos	glômeca
Abessive	glômepa	pjag.lêmos	glômepa
Semblative	glêmit	glêmot	glêmit

Table 15.6: The long numerals for 5.

Case \backslash Gender	Celestial	Terrestrial	Human
Nominative	cfersîp	cfêrson	cfêrsor
Accusative	cfersîn	cfêrsanon	cfêrsanor
Dative	cferpbâs	cfêrsos	cfêrsos
Genitive	cfersên	cfêršel	cfêršel
Locative	cfirsîpas	cfîrsion	cfîrsion
Instrumental	cforsîcba	cfîrsiol	cfîrsiol
Abessive	cforsîba	cfîrsiocp	cfîrsiocp
Semblative	cfelsip	cfêlsop	cfêlsop

Table 15.7: The long numerals for 6 .

Case $\backslash \#$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
Nominative	plamis	yatir	nalarp	emra	nalfo
Accusative	plamin	yatjan	nalan	emran	nalfon
Dative	plamipa	yatis	nalpas	emras	nalfos
Genitive	plamen	yatin	naler	emren	nalfen
Locative	plemelt	yotis	nelarp	imras	nolfos
Instrumental	plemilca	yotica	nolacp	omrac	nolfoca
Abessive	plemilpa	yotirpa	nolerp	omrep	nofelpa
Semblative	plamit	yadir	nalirp	emlit	nalfit

Table 15.8: The long numerals from 7 to 11.

Case					
＃	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$
Nominative	nedras	tfalja	grinjo	grimin	mepos
Accusative	nedran	tfaljan	grinjon	griman	mepon
Dative	nedrap	tfaljas	grinjos	grimis	mepasos
Genitive	nedren	tfaljen	grinjen	grimir	mepel
Locative	nidrap	tfoljas	gronjos	grjomis	mopos
Instrumental	nodracpa	tfoljac	grjonoc	gromir	cjamepos
Abessive	notreða	tfoljep	grjonop	grjomip	bjam•epos
Semblative	nedlis	tfalit	grenit	grimit	meðot

Table 15．9：The long numerals from 12 to 16.

The lemma form of a long numeral is its attributive form．Because long numerals inflect for case and possibly gender，they can be separated from their heads．

The following types of numerals can be derived from long numerals：
－To derive the pronominal form，prefix the particle $\langle a\rangle$（as a separate word）：〈prêno〉 three；〈a prêno〉 three of them．
－To refer to a number itself rather than the quantity it represents，prepend 【âћ－】 before a vowel or 【â－】 before a consonant to the celestial form，leniting the numeral：〈mepos〉 sixteen；〈âm•epos〉 the number＇ 16 ＇
－To create an adverb denoting the number of times something occurs，append $\llbracket-\mathrm{el} \rrbracket$ to the dative celestial form．Change any final $\llbracket-s \rrbracket$ to $\llbracket-\mathrm{r} \rrbracket$ ，unless there is any $\llbracket r \rrbracket$ earlier in the numeral：\langle nefas two（dative）；〈nefarel〉 twice．Note that \langle plamipa〉 is changed to〈plamipel〉．

15．1．1 Ordinal long numerals

Ordinal numerals start from zero，such that number 0 refers to the first object， 1 refers to the second，and so on．Ordinal long numerals occur before the noun phrase they modify but need not be adjacent to them．

15．2 Short numerals

The short numerals up to 16 are listed in Table 15.14
Short numerals up to $16^{2}=256$ of the form $16 x+y$ are roughly formed as $\llbracket x$－srap－$y \rrbracket . x$ is omitted if it equals 1 ，and y is omitted if it equals 0 ．【－srap－】 fuses with certain values of y ， yielding the forms in the last column of Table 15.14

Short numerals up to $16^{4}=65536$ of the form $256 x+y$ are formed as $\llbracket x$－flen－$y \rrbracket$ ，where x is omitted if equal to 1 and y is omitted if zero．

Numerals beyond 65536 are formed by splitting the digits into groups of four from the least significant digit and using the words for powers of 65536 in Table 15．15 A coefficient of one on the highest power of 65536 in a short numeral is omitted．Any power of 65536 with a coefficient of zero is omitted．

Case \backslash Gender	Celestial	Terrestrial	Human
Nominative	elap	elros	elacp
Accusative	elor	eljon	elor
Dative	eli	eljos	elic
Genitive	elip	elpos	elicp
Locative	elapa	elapos	elapac
Instrumental	elica	elicon	eliћac
Abessive	elipa	elipon	elipac
Semblative	elit	elot	elit

Table 15.10: The ordinal long numerals for 0 .

Case \backslash Gender	Celestial	Terrestrial	Human
Nominative	gesap	gepos	gesacp
Accusative	gesor	gešon	gesor
Dative	ges	geos	ges
Genitive	gešib	gešip	gešicp
Locative	gjapa	gjapos	gjapac
Instrumental	gecpa	gecpon	geppac
Abessive	gepa	gepon	gepac
Semblative	gesit	gesot	gesit

Table 15.11: The ordinal long numerals for 1.

Case \backslash Gender	Celestial	Terrestrial	Human
Nominative	nefasap	nefapos	nefasacp
Accusative	nefasor	nefasor	nefasor
Dative	nefasel	nefasel	nefasel
Genitive	nefasap	nefašon	nefasecp
Locative	nefosapa	nefosapos	nefosapac
Instrumental	nefosacpa	nefosacpon	nefosappac
Abessive	nefosepa	nefosepon	nefosepac
Semblative	nefagit	nafegot	nefagit

Table 15.12: The ordinal long numerals for 2.

Case \backslash Gender	Celestial	Terrestrial	Human
Nominative	prêsap	prêpon	prêsacp
Accusative	prêsor	prêsor	prêsor
Dative	prêsacel	prêsacel	prêsacel
Genitive	prêsapas	prêsapon	prêsapac
Locative	prôsapa	prôsapos	prôsapac
Instrumental	prôsacpa	prôsacpon	prôsappac
Abessive	prôsepa	prôsepon	prôsepac
Semblative	prêvit	prêvot	prêvit

Table 15．13：The ordinal long numerals for 3.

Hex	Dec	Base	After \langle srap〉
0	0	ces	－srap
1	1	vil	－srapfil
2	2	sen	－srappen
3	3	en	－srapien
4	4	tar	－sraptar
5	5	do	－sraðo
6	6	mja	－srapmja
7	7	len	－srałen
8	8	fe	－srafpe
9	9	ni	－srapni
A	10	re	－srapre
B	11	pin	－srappin
C	12	va	－srepjon
D	13	ћas	－srelћas
E	14	go	－sracpo
F	15	łar	－sratłar
10	16	srap	

Table 15．14：The short numerals up to 16，along with their forms when fused with〈srap〉 sixteen．

$\#$	Name
16^{4}	dara
16^{8}	seta
16^{12}	riso
16^{16}	nanâ
16^{20}	gelten
16^{24}	słar
16^{28}	lina
16^{32}	ðose

Table 15.15: Short numerals: powers of 65536 .

Hex	Dec	Name
11	17	srapfil
20	32	sensrap
45	69	tarsraðo
BD	189	pinsrelhas
100	256	flen
107	263	flenlen
300	768	enflen
9 B30	39728	nisrappinflenensrap
187 A4	100260	darafesrałenflenresraptar
49 AC2	301762	tardaranisraprevasrappen
100000500	4294968576	setadoflen
3100010000	210453463040	ensrapfilsetavildara

Table 15.16: Examples of short numerals.

Classifier	Description
－lap	humans and other sapient species
－cef	birds
－del	fish
－cir	insects and arachnids
－mis	medium－sized（approx． 2 kg ）to large animals
－baf	small animals（less than 2 kg）
－nen	woody plants（such as trees）
－min	non－woody plants（such as grass）
－jen	fruits and nuts
－ðis	flexible flat objects
－čis	rigid flat objects
－gor	balls and other spherical objects
－če	cylindrical or reasonably thick rod－like objects
－sei	ring－like objects
－sin	branches，roots，arms，and legs；thin rod－like objects
－mic	grains or other small particles；small insects
－ven	written works（such as books）
－cjan	artistic or intellectual works（other than written works）
－čar	rooms，houses，buildings
－čin	weapons
－tes	connections or links；chains
－ðe	events in time
－brem	celestial bodies

Table 15．17：Classifiers for short numerals．

Like long numerals，short numerals are used primarily as determiners．Unlike long nu－ merals，they require classifiers for most nouns．

The following nouns do not have classifiers，but they must use a long numeral if available：
－Units of measurement
－The nouns 〈sar〉 thing or 〈ðên〉 occurrence
The numeral 〈ces〉，as well as any numeral that is or ends in 〈ћas〉 or 〈srepas〉，triggers a lenition in the classifier．

Adding the particle 〈cepe〉 before a short numeral negates it，eclipsing it．Since there are no negative long numerals，a negative short numeral can always be used for unclassified nouns．

To refer to the quantity described by a short numeral itself，a short numeral can be com－ pounded with 〈mener〉 as the head．The nominative form of a nominal short numeral may be abbreviated using figures followed by a \langle/\rangle ，especially in data．

Case \backslash Gender	Celestial	Terrestrial	Human
Nominative	mâna	mânos	mânac
Accusative	mânan	mânon	mânor
Dative	môras	môros	môras
Genitive	mân	mân	mân
Locative	mâsor	mâsor	mâsor
Instrumental	mâya	cjamâsel	mâyac
Abessive	mênpa	bjam•âsel	mênpac
Semblative	mânat	mânot	mânat

Table 15.18: The long numerals for $1 / 2$.

Case			
#	$\mathbf{1 3}$	23	15
Nominative	sêpa	nêpa	acasa
Accusative	sêpan	nêpan	acasan
Dative	sêpas	nêpas	acaras
Genitive	sêben	nêpen	acasen
Locative	sajopos	najopos	acos
Instrumental	sopoca	nepoca	acita
Abessive	sotopa	netopa	arica
Semblative	saðat	nelðat	acadet

Table 15.19: The long numerals for other fractions.

Short numerals other than the ones for $0,1,2$, and 3 can be used as ordinal numerals by placing them immediately before the noun phrase being modified with no classifier. A negative short numeral refers to an object from the last one: -1 refers to the last object, -2 to the second-last object, and so on.

15.3 Non-integral numerals

15.3.1 Rational numerals

Some commonly-used fractions have long forms: $1 / 2$ for each gender (Table 15.18), and $1 / 3,2 / 3$, and $1 / 5$ without distinctions in gender (Table 15.19).

Rational numbers with a numerator of 1 are derived from the short numeral of the denominator plus a suffix that depends on case (Table 15.20). When the short numeral is monosyllabic, an extra syllable $\llbracket-$ râ- \rrbracket is infixed between the numeral and the suffix. Because of the presence of case agreement, these numerals are also considered long numerals.

Case	Suffix
Nominative	-ten
Accusative	-tane
Dative	-tens
Genitive	-teri
Locative	-tarb
Instrumental	-tarco
Abessive	-tarpo
Semblative	-telca

Table 15.20: Suffixes for unit fractions.
(53) edvel mjare varâten.
edv-el mjar-e va-râ-ten.
penny-NOM.Sv shilling-nOM.SG twelve-FRACB-FRAC.NOM
One penny is 112 th of a shilling.
Vulgar fractions (i.e. of the form n / d) are formed using the unit fraction for $1 / d$ immediately followed by the numeral for n. Since n does not receive a classifier, it must be long if there is a long form available for n, in which case its case and gender matches that of $1 / d$.
(54) nemiren acasan nefan mênčesta.
nem-iren acas-an nefan mênč-es-ta.
apple-ACC.PL one_fifth-ACC two.Acc.cel eat-2SG-PAST
You ate two-fifths of an apple.
(55) ânirâteri plamen
â-ni-râ-teri plamen
NNOM-nine-FRACB-FRAC.GEN seven.gen
of the number 79
(56) a nisrapniten mjasraðo

$$
\begin{aligned}
& a \quad \text { ni-srap-ni-ten }
\end{aligned} \begin{aligned}
& \text { mja-sraðo } \\
& \text { NPN } \\
& \text { nine-sixteen-nine-FRAC.NOM } \\
& \text { six-sixteen.five }
\end{aligned}
$$

A mixed number $m+n / d$ is expressed by using the numeral for m (the long form if one is available, otherwise the short form), followed by the conjunction \langle i \rangle plus the numeral for n / d.
nafsa mina i sêpa
$\begin{array}{llll}\text { nafs－a } & \text { mina } & i & \text { sêba } \\ \text { nafsa－NOM．SG } & \text { one．nOM．CEL } & \text { mXN } & \text { one＿third－nOM }\end{array}$
$1 \frac{1}{3}$ of a nafsa

If a mixed number is used pronominally，then only the numeral for m assumes its pronom－ inal form：
a mina i sêpa

$a \quad$ mina $\quad i$	sêpa	
NPN	one．NOM．CEL	MXN
one＿third－NOM		

Likewise，a mixed number used nominally receives changes only to the numeral for m ：
srapvilm•ener i mjarâten glêma
srapvil－m•en－er $i \quad$ mja－râ－ten glêma
sixteen．one－number－nom．sG mXN six－FRACB－FRAC．NOM five．NOM．CEL
the number 17%

15．3．2 Inexact numerals

Inexact numerals are represented in scientific notation with base 16．The short－form digits of the significand are listed（with an implied decimal point after the first digit），followed by a suffix representing the exponent．

The exponent suffixes are listed in Table 15.21 Odd powers over 16^{6} are derived from the power below，prepended with $\llbracket-1 \hat{1}-\rrbracket$ ．For instance， 16^{11} has the suffix 【－lifflerico】，from the suffix for 16^{10} ．

Powers below 16^{-4} are derived from their corresponding reciprocals by prefixing $\mathbb{[}$－maga－ \rrbracket ．For instance， 16^{-12} has the suffix \llbracket－magaacpeno \rrbracket ，from the suffix for 16^{12} ．

Note that adding or removing trailing zeroes in the significand changes the precision of the numeral 1 A leading zero in the significand is not allowed unless it is the only digit．

Examples：

- 〈ensentarenłarmino〉 $3.243 F_{16} \times 16^{0}$
- 〈senvilcescenroto〉 $2.10_{16} \times 16^{2}$
- 〈senvilhenroto〉 $2.1_{16} \times 16^{2}$ ，which is a different number．
- 〈cepeћarpo〉 0×16^{-3} ；i．e．a quantity whose absolute value is less than 8×16^{-4} ．
- 〈lenłarfemjalîdasvito〉 $7 . F 86_{16} \times 16^{19}$

[^9]| \# | Name |
| :--- | :--- |
| 16^{24} | -vanaso |
| 16^{22} | -retrapo |
| 16^{20} | -estrôto |
| 16^{18} | -dasvito |
| 16^{16} | -êsravo |
| 16^{14} | -pertapo |
| 16^{12} | -acpeno |
| 16^{10} | -flerico |
| 16^{8} | -nelepro |
| 16^{6} | -cjamipo |
| 16^{5} | -lîpêrnero |
| 16^{4} | -têrnero |
| 16^{3} | -ermenroto |
| 16^{2} | -henroto |
| 16^{1} | -ermepo |
| 16^{0} | -mino |
| 16^{-1} | -sevo |
| 16^{-2} | -garpo |
| 16^{-3} | -seћarpo |
| 16^{-4} | -têramo |

Table 15.21: Exponents for use in short numerals.

Inexact numerals are considered short numerals and thus take classifiers．
An inexact numeral with 〈pen〉 in the significand is an indefinite inexact numeral， which shows only the order of magnitude of something．Unlike an inexact numeral with 〈ces〉 as the magnitude，an indefinite inexact numeral establishes a lower bound on the quantity．

The inexact exponents are also used as prefixes for units of measure in systematic systems．

15．3．3 Complex numerals

Complex numerals are composed of the real part，followed by 【－perin－】 or 【－nilis－】，then the imaginary part．\llbracket－perin－\rrbracket is used when the imaginary part is positive and $\llbracket-$－nilis－\rrbracket is used when it is negative．Both the real and the imaginary part are expressed as short numerals，and the resulting numeral is short．

If the real part is omitted，then it is assumed to be zero．If the imaginary part is omitted， then it is assumed to be either 1 or -1 ，depending on its sign．$\llbracket-\eta$ ilis－\rrbracket has the form $\llbracket-\mathrm{yils} \rrbracket$ word－finally．

The particle 〈cepe〉 affects only the real part of the numeral．
If one or both components are exact but not integral，then a rational numeral is used with a common denominator，in which the numerator is a complex numeral．

Alternatively，one or both components may be inexact，in which case the other must either be integral or inexact．If both components are inexact，then they must still be listed in full．
（60）mjaperindo
mja－perin－do
six－cPx－five
$6+5 i$
（61）taryilipen
tar－ทilis－sen
four－CPX．NEG－two
$4-2 i$
（62）perinen
perin－en
CPX．NEG－three
$3 i$
（63）vilyils
vil－nils
one－CPX．NEG
$1-i$
（64）cepe vfeperinva
cebe $v \backslash f e-p e r i n-v a$
minus eight－cpx－twelve
$-8+12 i$
（65）âsêpa mjaperinsen
â－sêpa mja－perin－sen
nNOM－one＿third．nOM six－cPX－two
$\frac{1}{3}(6+2 i)=2+\frac{2}{3} i$
（66）vilperinentarfapenmino
vil－perin－en－tar－ћas－sen－mino
one－cPx－three－four－thirteen－two－InExACT． 16^{0}

$$
\frac{1}{\text { exact }}+\underbrace{3.4 D 2_{16} i}_{4 \mathrm{SFs}}
$$

15．4 Interrogative quantities

Narâp Crîp has the determiner 〈met〉 how many？，how much？The nominal counterpart is \langle metos，mjotos，medot〉（IIIc．m）．

15．5 Number agreement

The morphological number of a noun modified by a numeral agrees with that numeral．In particular：
－Singular nouns take the singular for $-1,0$ ，and 1 ；the dual for ± 2 ，and the plural for all other numerals．
－Collective nouns take the singulative for 1 and the collective for all other numerals．
－Mass nouns always take the direct number when modified by a numeral．
Additionally，all numerals are compatible with the generic number．

15．6 Clitics for numerals

The distinctness clitic $\langle=$＇ot \rangle indicates that the items being counted are unique．This clitic can be used on all numerals as well as on the determiners 〈mel〉 and 〈dân〉 but makes sense only with integral quantities．

The bounding clitic 〈＝＇ocpaf〉 specifies the the numeral specifies an upper bound for the number of items（no more than）．This clitic can be used on all numerals．It cannot be used on \langle mel〉，nor can it be used on 〈dân〉（as it would be redundant）．

Factor	x^{1}	x^{2}	x^{3}	x^{4}	x^{5}	x^{6}	x^{-1}	x^{-2}
$\mathbf{2}$	la	le	li	lî	lê	lô	lo	lâ
$\mathbf{3}$	se	ši	šê	šô	šî	šâ	ša	šo
$\mathbf{5}$	te	to	tâ	tô	tê	ti	ta	tî
$\mathbf{7}$	fi	fa	fo	fî	fê	fâ	se	sô
$\mathbf{1 1}$	fi	ła	lê	ło	lô	tî	lâ	le
$\mathbf{1 3}$	ga	co	gi	gâ	gô	gê	ge	gî
$\mathbf{1 7}$	cpa	cpâ	cpi	cpe	cpê	cpî	cpo	cbô
$\mathbf{1 9}$	jo	cjo	njo	vjo	sjo	rjo	je	cje
$\mathbf{2 3}$	ja	cja	nja	vja	sja	rja	nje	vje
$\mathbf{2 9}$	ri	cri	vri	sri	fri	gri	sje	rje
$\mathbf{3 1}$	tfa	tfâ	tfi	tfe	tfêe	tfîin	tfo	tfô

Table 15．22：Numeric prefixes in Narâp Crîp．

Prefix	Gloss
vli－	one，mono－，uni－
vlê－	many，multi－，poly－
pra－	few，oligo－

Table 15．23：Special numeric prefixes．

15．7 Numeric prefixes

Narâp Crîp has a set of prefixes used for derivation（e．g．in order to describe an entity of some number of parts）．These are not based on the ordinary cardinal numeral system but rather on the prime factorization of a number．

An ordinary prefix phrase consists of one or more prefixes from Table 15．22，such that the prefixes are sorted first by ascending base，then by descending exponent．A power greater than 6 or less than -2 is expressed by compounding multiple prefixes of the same base until the desired power is reached．A prefix phrase is either an ordinary prefix phrase or a prefix from table Table 15.23

If a prefix phrase modifies a noun that is monosyllabic in the nominative case，then an infix $\llbracket-\mathrm{i}-\rrbracket$ is added between them．

15．8 Numerals in writing

The general rule for writing numerals is that anything from the short numeral sytem may either be written with digits or spelled out，and that anything else is always spelled out．For instance，〈navo glêmac〉 may not be written as＊＊ navo 5\rangle or even as＊＊〈navo 5âc〉，but 〈navo sensrappinlap〉 may be written as 〈navo 2Blap〉．Similarly，〈nefasap forp〉 cannot be written using figures at all，while 〈len forp〉 may be abbreviated as $\langle 7$ forp〉．

The short－numeral parts of rational numerals，which are as a whole considered long nu－ merals，may also be abbreviated：〈srapfilm•ener i mjarâten glêma〉 to 〈11m•ener i 6râten glêma〉
(but not ${ }^{* *}\langle 11 \mathrm{~m} \cdot$ ener i 6râten 5\rangle).
Since the digits in inexact numerals are read one by one instead of respecting place value, a lil is inserted after the first digit when an inexact numeral is abbreviated: 〈senvilcescenroto〉 to $\langle 2 \cdot 10$ henroto \rangle.

15.9 Units of measure

For dimensions other than time, there are two systems of measure: the traditional system uses all units. The systematic system uses only one of the units, prefixed with inexact exponents; sometimes, the systematic unit is used without any prefixes, using inexact numerals instead.

15.9.1 Date and time

The year is approximated as having 403524 days; that is, the year length varies between 403 and 404 days, with five leap years per 24 -year cycle. (In particular, the leap years fall on years $0,5,10,15$, and $20 \bmod 24$.) This approximation drifts from the true year by about 1 day per 1234 years.

Unit	Conversion	Approximate SI equivalent
elep	$403 \frac{5}{24}$ envo	408.61 (Earth) days
enva	48 elvo	24.32 hours
elva	48 cenðor	30.4 minutes
cenðos	48 rirêns	38 seconds
rirens		0.792 seconds

Table 15.24: Units of time.

The year is also divided into 13 half-months (senło; sg. senłas) of 31 or 32 days (approximating half of the lunar orbital period of 62.02 days). In non-leap years, each half-month is conveniently 31 days long. In leap years, the last half-month is extended by one day.

\#	Name	Earth equivalent
$\mathbf{0}$	serend•rênerp	March 21 - April 17
$\mathbf{1}$	tovrasarta	April 18 - May 15
$\mathbf{2}$	vôrvaron	May 16 - June 12
$\mathbf{3}$	elpesêren	June 13 - July 10
$\mathbf{4}$	šisonm•êva	July 11 - August 7
$\mathbf{5}$	naram•jena	August 8 - September 5
$\mathbf{6}$	ceâpcfipar	September 6 - October 3
$\mathbf{7}$	eltasnelserp	October 4 - October 31
$\mathbf{8}$	inoravona	November 1 - November 28
$\mathbf{9}$	firjarcin	November 29 - December 26
$\mathbf{1 0}$	ercig•ina	December 27 - January 23
$\mathbf{1 1}$	sifłit•ano	January 24 - February 20
$\mathbf{1 2}$	ginasferp	February 21 - March 20

Table 15.25: The names of each half-month.

The calendar has a nine-day week. As a result, the day of week advances by two days every 24 -year cycle, and the day-of-week pattern cycles every 216 years. The first six days of the week are considered work days, while the last two are rest days. The seventh day, in modern times, is a 'half-work' day.

\#	Name	Associated element
$\mathbf{0}$	pelesto	darkness, chaos
$\mathbf{1}$	venes	fire
$\mathbf{2}$	hator	water
$\mathbf{3}$	anar	earth
$\mathbf{4}$	nerals	air
$\mathbf{5}$	cbilgesna	stars
$\mathbf{6}$	sivarja	moon
$\mathbf{7}$	elvina	sun
$\mathbf{8}$	felcapa	light, order

Table 15.26: The names of the days of the week.

15．9．2 Length

Unit	Conversion	Approximate SI equivalent
nafsa	16 eletin	1.90 km
eleten	12 vetin	119 m
veten	8 avanto	9.92 m
avanta（systematic）	6 rjasir	1.24 m
rjaser	24 cento	20.7 cm
centa	256 sanin	8.6 mm
sanen		$3.4 \mu \mathrm{~m}$

Table 15．27：Units of length．

15．9．3 Currency

The traditional currency system，which was used in the Federation of Crîpja，is almost iso－ morphic to the British pre－decimal currency system．One erłol is equivalent to 20 mjari ，and one mjare is equivalent to 12 edva．Unlike with the $£$ sd system，one edvel is divided into seven seedva，although the seedvel is used primarily as a unit of accounting．

In the full abbreviation，each unit has its own symbol，which is followed by the number of that unit involved．If there is more than one unit involved，then each such string is separated by spaces．Units of which there are zero are omissible only from the left and the right；that is，${ }^{* *}\langle 9\{\mathrm{r} 2 \mathrm{e} 3\}\rangle$ is not allowed and should be written as $\langle 9\{\mathrm{r} 2 \mathrm{~m} 0 \mathrm{e} 3\}\rangle$ instead．Likewise，the unabbreviated reading lists the units with their quantities，except that all units of which there are zero are omitted（i．e．〈erłoc nefa edva prêno＇ce〉）．

In the condensed abbreviation，the mjare and edva amounts are separated with a jedva， with no $\langle\mathrm{m}\rangle$ or $\langle\mathrm{e}\rangle$ ．If there are zero mjari，then the part before the slash is $\langle 0\rangle$ ；if there are zero edva，then the part after the slash is the pos，$\rangle\rangle$ ．Note that the condensed abbreviation is not applicable if there are any seedva．

In the abbreviated reading，which also does not admit any seedva，amounts less than one mjare are expressed using a numeric prefix（Section 15．7）plus 〈edva〉．Amounts of one mjare or more are expressed as follows：
－If there are any erler，then they are declared as they would in the unabbreviated reading． If there are no lower units，then the process ends here．
－The nominal form of the long numeral corresponding to the number of mjari is inserted． If there are no mjari，then 〈inora〉 emptiness is used instead．If there are 17,18 ，or 19 mjari， then there is no appropriate long numeral and so the corresponding short numeral with the classifier \llbracket－čis】 is used instead．Note that 〈srapfilčis〉，〈srappenčis〉，and 〈srapienčis〉 are not declined．
－The conjunction $\langle i\rangle$ is used to separate the mjare and edva amounts．
－The short numeral corresponding to the number of edva is inserted．

Table 15.28: Expressions of various amounts of money in the traditional currency system.

Quantity	Abbreviation	Long	Short
17d.	9\{s1\}	seedvel mina	-
27 d .	9\{s2\}	seedva nefa	-
37 d .	9\{s3\}	seedva prêno	-
47 d .	9\{s4\}	seedva resip	-
57d.	9\{s5\}	seedva glêma	-
67d.	9\{s6\}	seedva cfersîp	-
1d.	9\{e1\}	edvel mina	vliedva
117 d .	$9\{\mathrm{e} 1 \mathrm{~s} 1\}$	edvel mina seedvel mina'ce	-
127 d.	$9\{\mathrm{e} 1 \mathrm{~s} 2\}$	edvel mina seedva nefa'ce	-
167 d.	9\{e1 s6\}	edvel mina seedva cfersîp'ce	-
2d.	$9\{2 \mathrm{e}\}$	edva nefa	laedva
247 d .	9\{e2 s4\}	edva nefa seedva resip'ce	-
3d.	9\{e3\}	edva prêno	šeedva
4 d .	9\{e4\}	edva resip	leedva
5 d .	9\{e5\}	edva glêma	teedva
6d.	$9\{26\}$	edva cfersîb	lašeedva; lomjare
7 d.	$9\{\mathrm{e} 7$ \}	edva plamis	fiedva
8d.	9\{e8\}	edva yatir	liedva
9d.	9\{e9\}	edva nalarp	šiedva
10d.	9\{eA\}	edva emra	lateedva
11d.	$9\{\mathrm{eB}\}$	edva nalfo	tiedva
1s.	$9\{\mathrm{~m} 1\} ; 9\left\{1 /{ }^{\prime}\right\}$	mjare mina	mjare; âmina i ces
1s. 1d.	$9\{\mathrm{~m} 1 \mathrm{e} 1\} ; 9\{1 / 1\}$	mjare mina edvel mina'ce	âmina i vil
1s. 2d.	$9\{\mathrm{~m} 1 \mathrm{e} 2\} ; 9\{1 / 2\}$	mjare mina edva nefa'ce	âmina i sen
1s. 3d.	$9\{\mathrm{~m} 1 \mathrm{e} 3\} ; 9\{1 / 3\}$	mjare mina edva prêno'ce	âmina i en
1s. 4 d .	9\{m1 e4\}; $9\{1 / 4\}$	mjare mina edva resip'ce	âmina i tar; venos
1s. 6 d .	9\{m1 e6\}; 9\{1/6\}	mjare mina edva cfersîp'ce	âmina i mja
			Continued on next page

Table 15.28: Expressions of various amounts of money in the traditional currency system. (Continued)

Quantity	Abbreviation	Long	Short
1s. 9d.	9\{m1 e9\}; 9\{1/9\}	mjare mina edva nalarp'ce	âmina i ni
2s.	9\{m2\}; 9\{2/'\}	mjarec nefa	ânefa i ces
2s. 6d.	9\{m2 e6\}; 9\{2/6\}	mjarec nefa edva cfersîb'ce	ânefa i mja; cpîf
3s.	9\{m3\}; 9\{3/'\}	mjari prêno	âprêno i ces
3s. 6d.	9\{m3 e6\}; 9\{3/6\}	mjari prêno edva cfersîb'ce	âprêno i mja
4s.	9\{m4\}; 9\{4/'\}	mjari resip	âresip i ces
4s. 6d.	9\{m4 e6\}; 9\{4/6\}	mjari resip edva cfersîb'ce	âresip i mja
5s.	9\{m5\}; 9\{5/'\}	mjari glêma	âglêma i ces; catra
6s.	9\{m6\}; 9\{6/'\}	mjari cfersîb	âcfersîb i ces
10s.	9\{mA\}; 9\{A/'\}	mjari emra	âћemra i ces; ercjor
11s. 7d.	9\{mB e7\}; 9\{B/7\}	mjari nalfo edva plamis'ce	ânalfo i len
15s. 2d.	$9\{\mathrm{mF} \mathrm{e} 2\} ; 9\{\mathrm{~F} / 2\}$	mjari grimin edva nefa'ce	âgrimin i sen
16s. 11d.	$9\{\mathrm{~m} 10 \mathrm{eB}\} ; 9\{10 / \mathrm{B}\}$	mjari mepos edva nalfo'ce	âmepos i pin
17s.	9\{m11\}; 9\{11/'\}	mjari srapfil	srapfilčis
17s. 5d.	$9\{\mathrm{~m} 11 \mathrm{e} 5\} ; 9\{11 / 5\}$	mjari srapfil edva glêma'ce	srapfilčis i do
18s.	9\{m12\}; 9\{12/'\}	mjari srappen	srapbenčis
19s.	9\{m13\}; 9\{13/'\}	mjari srapien	srapienčis
19s. 11d.	9\{m13 e11\}; 9\{13/B\}	mjari srapien edva nalfo'ce	srapienčis i pin
19s. 1167 d .	$9\{\mathrm{~m} 13 \mathrm{e} 11 \mathrm{~s} 6\}$	mjari srapien edva nalfo'ce seedva cfersîb'ce	-
$£ 1$.	9\{rt1\}; 9\{rı1 0/'\}	erłol mina	erłol
£1. 0s. 1d.	9\{r11 m0 e1\}; 9\{rı1 0/1\}	erłol mina edvel mina'ce	erłol mina i inora i vil
£1. 1s.	9\{rı1 m1\}; 9\{rl1 1/'\}	erłol mina mjare mina'ce	erłol mina i âmina
£1. 3s. 8d.	9\{r11 m3 e8\}; 9\{rt1 3/8\}	erłol mina mjari prêno'ce edva yatir'ce	erłol mina i âpreno i fe
			Continued on next page

Table 15.28: Expressions of various amounts of money in the traditional currency system. (Continued)

Quantity	Abbreviation	Long	Short
£2.	9\{rı2\}; 9\{rı2 0/'\}	erłoc nefa	-
$£ 2.3 \mathrm{~s} .6 \mathrm{~d}$.	9\{rł2 m3 e6\}; 9\{rı2 3/6\}	erłoc nefa mjari prêno'ce edva cfersîb'ce	erłoc nefa i âpreno i mja
£14. 8s. 2d.	9\{rłE m8 e2\}; 9\{rłE 8/2\}	erłer grinjo mjari yatir'ce edva nefa'ce	erłer grinjo i âyatir i sen
$£ 34.17 \mathrm{~s} .1 \mathrm{~d}$.	$\begin{aligned} & 9\{\mathrm{r} 122 \mathrm{~m} 11 \mathrm{e} 1\} ; 9\{\mathrm{r} \not 22 \\ & 11 / 1\} \end{aligned}$	erłer sensrabpen mjari srapfil'ce edvel mina'ce	erłer sensrapben i srapfilčis i vil

Another format for expressing currency, used in accounting, is $\langle 9\{E$ mmes $\}\rangle$, in which the units below the ertol are expressed as fixed-width fields. For instance, $£ 127.19 \mathrm{~s}$. 1167 d . ($\langle 9\{\mathrm{rl7F}$ $\mathrm{m} 13 \mathrm{eB} 56\}\rangle$ in the common format) can be expressed as $\langle 9\{7 \mathrm{~F} 13 \mathrm{~B} 6\}\rangle$. The right part of an amount expressed in the accounting format is read digit by digit, with the space read as $\langle i n o r a\rangle$; thus the prior example would be read as 〈lensratłar inora vilenpinmja〉.

Rates of currency against currency (such as tax rates) are customarily given as an amount per ertol, giving a resolution of $1 / 1680$ or roughly 0.06%.

Chapter 16

Derivations

Observations on the Narâb Crîp lexicon that deserve their own section．

16．1 Compounding

Closed compound nouns can be formed by combining a noun or verb with a noun．The＇head＇ of the compound comes second．If the head noun is neither terrestrial nor a form of 〈vês〉 system，then it is lenited．Principal forms are inherited from the head noun．

A noun used as the first element of a closed compound is in its conjunct form．For most nouns，this is identical to the lemma，but some nouns，such as those whose lemma forms end in complex codas，have distinct conjunct forms．

A verb in a closed compound has its final $\llbracket-\mathrm{t} \rrbracket$ dropped．
Narâb Crîp supports two types of open compounds：GENITIVE COMPOUNDS and ZERO COM－ pounds．Genitive compounds are made of a genitive noun phrase modifying a noun．The genitive noun phrase always has default number，and the genitive and the head noun cannot be separated by hyperbaton．

A zero compound is a head－initial compound where the second word either agrees with the case of the head noun or is uninflected．If the modifier is marked for case，then the two components can be separated as long as their relative order is preserved．Zero compounding is most often used for the names of languages，such as 〈 \mathfrak{y} arâp crîp〉 and 〈 \mathfrak{y} arâp＠asoren〉．This construction is similar to that of qualified names（Section 12．13）．

16．2 Derivation

16．2．1 Verb to noun

For all of the following derivations，the derived nouns are in the celestial gender unless they refer to human beings．

The instrument derivation

The instrument derivation forms a noun that describes an instrument that performs an action．The resulting noun is a second－declension $\llbracket-i r \rrbracket$ noun whose：
－ N stem is $\llbracket \mathrm{N} \Theta \nmid \rrbracket$ ，
－L stem is $\llbracket \mathrm{Ne}^{\xi} \mathrm{s} \rrbracket$ ，
－ S stem is $\llbracket \mathrm{NO} \rrbracket \rrbracket$ ，and
－locative vowel is $\llbracket \mathrm{e} \rrbracket$ ．

The agent derivation

The agent derivation forms a noun that describes an animate being that performs an action． Narâp Crîp has two different derivations：the durable agent derivation is used to derive nouns that refer to someone who usually performs the action over a long span of time．For instance，it could refer to those performing the action as part of their profession．The durable agent noun of a verb is a fourth－declension noun whose：
－N stem is 【Iið】 for most nouns．If I can be matched to $\llbracket I^{\prime} \mathrm{a} \rrbracket$ ，then it is $\llbracket \mathrm{I}^{\prime} \mathrm{e} ð \rrbracket$ ；if I can be matched to 【I＇i \rrbracket ，then it is $\llbracket I^{\prime} \imath ̂ \rrbracket \rrbracket$ ．
－L stem is $\llbracket L^{\mathrm{p}} \rrbracket$ ，

- S stem is 【Pîd】，and
- thematic and locative vowel are 【a】．

The transient agent derivation is used for referents that generally engage in the action over a more limited span of time．The transient agent noun of a verb is a second－declension $\llbracket-i r \rrbracket$ noun whose：
－ N stem is $\llbracket \mathrm{N} \Theta \mathrm{d} \rrbracket$ ，
－L stem is $\llbracket \mathrm{N}^{\xi}{ }^{\xi} \mathrm{d} \rrbracket$ ，
－ S stem is $\llbracket \mathrm{N} \Theta \mathrm{d} \rrbracket$ ，and
－locative vowel is 【e】．
Note that the distinction between the durable and transient agent derivations is lexical． That is，someone who becomes a teacher for one month before switching to another career would still have been a 〈sarep〉，not a 〈saradir〉．

The patient derivation

The patient derivation forms a noun that describes something to which an action is done． The resulting noun is a second－declension \llbracket－êr \rrbracket noun whose：
－ N stem is the I stem of the verb，
－ G stem is the N stem of the verb，
－L stem is the L stem of the verb，
－S stem is $\llbracket \mathrm{N}(\hat{\mathrm{e}}) \mathrm{r} \rrbracket$ ，and
－locative vowel is 【i】．

The location derivation

The location derivation forms a noun that describes a location at which an action happens． The resulting noun is a first－declension 【－es】 noun whose：
－ N stem is $\llbracket \mathrm{\Theta} \Theta \downarrow$ ，
－L stem is $\llbracket \Theta^{\gamma} \downarrow \rrbracket$ ，
－S stem is $\llbracket \mathrm{NO} \not \mathrm{Hc} \rrbracket$ ，and
－locative vowel is 【a】．

The quality derivation

The Quality derivation forms a noun that describes the action or quality described the verb． This is a second－declension $\llbracket-\operatorname{erb} \rrbracket$ noun whose：
－ N stem is the I stem of the verb，
－L stem is the L stem of the verb，
－ S stem is the N stem of the verb，and
－locative vowel is 【e】．
If the I stem ends with $\llbracket-\mathrm{a}-\rrbracket$ or $\llbracket-\mathrm{a} \hbar-\rrbracket$ ，then the noun is a second－declension $\llbracket-\mathrm{arb} \rrbracket$ noun instead，with the final $\llbracket-\mathrm{a}-\rrbracket$ or $\llbracket-\mathrm{a} \hbar-\rrbracket$ removed from the noun＇s N and S stems．

If the I stem ends with $\llbracket-\mathrm{r}-\rrbracket$ ，then the quality derivation might be an $\llbracket-\mathrm{e} \rrbracket \rrbracket$ noun instead．

16．2．2 Verb to verb

Other aspects

The prefix 【es－】forms an inceptive or inchoative form of a verb（start～ing），and 【caro－】 forms a cessative（stop～ing）：〈mitrit〉 run；〈esmitrit〉 start running；〈carmitrit〉 stop running． The cessative prefix does not cause any mutation in inflected forms of 〈epit〉 or 〈telit〉．

The prefix \llbracket ero－】 forms a terminative form of a verb（finish～ing）and is applicable only to lexically telic verbs．

16．2．3 Noun to noun

- Augmentative：【ar－】
- Diminuitive：$\llbracket-\mathrm{in} \rrbracket, \llbracket-(n) t i n \rrbracket, \llbracket-(n)$ čin】，or $\llbracket \mathrm{e}-\rrbracket$

16．2．4 Calculus

New words can also be derived by differentiating or integrating existing terms．
Each affix listed in Table 16.1 has a reciprocal counterpart．For most affixes，this is de－ rived by inverting the tone of the second－to－last vowel of the affix（ \llbracket－relne－】DDA \rightarrow 【－rêlne－】 DDA．REC；＇reciprocal of the derivative with respect to 2－dimensional space＇），but the reciprocal of $\llbracket-$－mitra－】 is \llbracket－genna－\rrbracket ．In the case of the nominal forms，this translates to inverting the tone of the last vowel of each stem．However，the I＇stem of the reciprocal of \llbracket－senna－】is 【sinn】．

Variable	Operation	Infix	Nominal
Time	Derivative（DDT）	mitra	mitra，motras，mitrit（Ic）
	Reciprocal（DDT．REC）	genna	genna，gelnas，gendit（Ic）
	Integral（IDT）	arcja	arcja，arpes，arcit（Ic）
Space（1D）	Derivative（DDx）	cpivo	cpivo，cpelvas，cpivit（Ic）
	Integral（IDX）	jando	jando，jondas，jandit（Ic）
Space（2D）	Derivative（DDA）	relne	relen，rjales，cjareles，cjarilo，relit（VIc）
	Integral（IDA）	senna	senan，sines，cjasines，cjasuno，sengit（VIc）
Space（3D）	Derivative（DDXv）	marša	marša，miršas，maršit（Ic）
	Integral（IDXV）	ganto	ganto，gentas，gandit（Ic）
Population	Derivative（DDP）	gille	gille，gelles，gildit（Ic）
	Integral（IDP）	grija	grija，rijes，riћit（Ic）

Table 16．1：Calculus affixes in Narâb Crîp．

Infix forms

Different kinds of verbs can be modified with the calculus affixes by infixing the infix forms immediately after the last vowel of the stem．

The affixes can be used on stative verbs，turning its meaning from（S）is high in y to (S) is high in $d y / d t \& c$ ．：

- 〈ecljat＞（S）is far from（I）
- 〈emitracljat〉（S）is moving quickly from（I）
- 〈earcjacljat〉（S）has a high absement from（I）
- 〈egennacljat〉（S）is moving slowly from（I）

Active verbs can take only 【－mitra－】 and 【－genna－】，indicating the speed at which the action is done．

Nominal forms

A compound of a noun（in its conjunct form）and the nominal form of a calculus affix can be used．Nouns that can be modified in this way include those that describe measurable quantities or objects：〈ariga〉 warmth；〈arigamitra〉 rate of temperature change；〈arigamarša〉 temperature gradient in 3D space．

In addition，the numeral 〈âmina〉 and the determiners 〈mel〉 and 〈dan〉 can be combined with the affixes in the same way．

Chapter 17

Sensation \＆perception

17．1 Shape

Shape can be perceived with different senses．

17．1．1 Size

For overall size，Narâb Crîb uses the verbs 〈mervit〉 large and 〈nôrit〉 small，the latter being colexified with young．〈gadosit〉 is an intensified counterpart to 〈mervit〉．

17．2 Vision

The basic verb for seeing is 〈menat〉．〈vonat〉 and 〈varmenat〉 imply a sense of volition on top．

17．2．1 Brightness

For bright，Narâp Crîp uses the verb 〈lirnat〉 for emitting a large amount of light and 〈csarneat〉 for well－lit．The antonym of the former is the verb 〈arelit〉（also meaning difficult to see）．and that of the latter is the noun 〈crîna〉（also meaning black or dark in color）．

17．2．2 Color

Narâp Crîp has the six basic color terms．Interestingly，color terms are asymmetric syntacti－ cally：only two color terms have both a nominal and verbal form．

Color	Noun	Verb
Transparent	magen	mirbit
Black	crîna	-
White	inepa	-
Red	ceap	censit
Green or blue	-	naðasit
Yellow	tfora	-

Table 17．1：Basic color terms in Yarâp Crị̂．

Color terms can be used attributively by using the genitive singular forms for nominal forms and the participles for verbal forms．

Verbal color terms can be used predicatively as is．Nominal color terms can be used pred－ icatively by using the relational 〈čil〉 with the subject being the color and the object being the object with that color．If the colored object is not solid，then the verb 〈epit〉 is used with the object in the locative case．

In addition，〈crîna〉 and 〈inepa〉 are used for the characteristic of being dark or pale in general．
［TODO：RGB and CMY primary color terms］

17．3 Sound

The basic verb for hearing is 〈crešit〉，from which 〈varešit〉 listen to a person speaking；read carefully is derived．

17．3．1 Pitch

For voices，〈firit〉 is used to refer to high pitch（colexified with thin（lamina））；conversely，〈vrelat〉 is used to refer to low pitch（colexified with thick）．

17．3．2 Loudness

The main verbs describing loudness are 〈vregit〉 loud and 〈cicpit〉 soft．Their more extreme counterparts are 〈gelgačit〉 and the noun 〈išilte〉．

17．3．3 Timbre

17.4 Touch

$\langle t e c s a t\rangle$ is used for touch or feel．
〈nêlit〉 soft；〈ercit〉 cold

17．5 Smell

\langle hacal〉 is used for smell or odor；〈calit〉 is to sense it．

17．6 Taste

〈ifoma〉 is used for taste and flavor；〈evantat〉 is to sense it．Narâb Crîb does not generally distinguish taste and flavor．

Terms for specific tastes include 〈cełirat〉 sweet，〈gelfat〉 bitter，？salty，？sour，？umami，〈cpîrvit〉 spicy，？minty，and ？fatty．

Terms for intensity of taste include？intense，flavorful and ？bland．

17．7 Cognition

Chapter 18

Kinship

The most common kinship terms in Narâp Crîb (Table 18.1) are determined not by the gender of the member, but rather whether it is the same or different as that of oneself. Derived terms are given using the period as used in programming languages (i.e. it should be read as the Japanese の).

Term	Gloss
melco	parent of same gender as self
tfoso	parent of opposite gender as self
nanda	child of same gender as self
larop	child of opposite gender as self
armo	sibling of same gender as self
melsas	sibling of opposite gender as self
veliša	spouse

Table 18.1: Kinship terms in Narâb Crî̀.

Chapter 19

Loanwords

Loanwords and foreign names are marked with a $n e f,\left\langle^{*}\right\rangle$ ．
In the case of Narâb Crîb，however，what counts as a＇loanword＇is more complicated than in many other languages．Inherited words are not loanwords，and words borrowed from Necarasso Cryssesa v6 are not considered loanwords，either．Words borrowed from desorin are usually not considered to be loanwords，but recent borrowings from tecter are．Borrowings from other languages are naturally considered loanwords，but calques are not．

Sometimes，a word may be marked with a nef for reasons unrelated to borrowing．For instance，the words 〈＊sedapat〉 female and 〈＊moganit〉 male were inherited from an East Sylvic language and were originally written without nefs until the late Senârmortos period．In this case，the nefs seemed to be added in order to discourage these words from being used．Inter－ estingly，the stigma arising from these nefs does not seem to apply to true loanwords．

19．1 Adaptation of foreign words

19．1．1 Graphemic adaptation

Generally，when borrowing from languages that use the Cenvos script or a script related to it，and whose orthographies in the script in question do not deviate too far from Narâp Crîp usage，Narâp Crîb prefers to borrow the word graphemically than phonemically．
［TODO：problems：phonotactics，use of foreign letters（ $\langle\mathrm{wxy} \mathrm{z}\rangle,\left\langle{ }_{2}{ }_{2}\right\rangle$ diacritics）］

19．1．2 Phonetic adaptation

19．1．3 Morphological adaptation

［TODO：particularly nouns］

Part VI

Appendix

Appendix A

Glossary

Click on a headword to go to the relevant part of the grammar．

Abessive case（Chapter ？？）

The case that shows that a noun phrase is not used as an instrument or an accompani－ ment；that is，it is the negataion of the instrumental case．
Translations：Arka：vitsame

Absolute head particle（aheadp）（Section ？？）

A head particle that always occurs at the beginning of an independent clause phrase．
Translations：Japanese：絶対文頭純詞，Arka：anoiosnreit

Accusative case（Chapter ？？）

The case that，among other things，indicates the＇direct object＇of a verb phrase．
Translations：Japanese：対格，Arka：yulsame

Ancilliary object（Chapter ？？）

In trivalent relationals，the less salient of the two objects．
Translations：Arka：roxkomit

APN－irregular verb（Subsection ？？）

An irregular verb whose finite forms are specified according to aspect，person，and num－ ber．

Applicative voice（Subsubsection ？？）

The voice that promotes an oblique adjunct to the dative case，demoting the existing dative argument．
Translations：Japanese：適用態
Aspect（Section ？？）
A property of a conjugated verb that denotes how the action or state described by the verb extends over time．Narâp Crîp has two aspects：imperfective and perfective．The imperfective aspect is used for ongoing（such as progressive or habitual）actions．The perfective aspect is used for completed actions．In conjugation，aspects can be labeled as direct or indirect．The direct aspect is imperfective for the present tense and perfective for the past tense；the inverse aspect is the other aspect．
Translations：Japanese：相，Arka：nif

Aspectual auxiliary verb（Subsection ？？）

An auxiliary verb that indicates aspect．

Attachment（Section ？？）

Whether an attributive predicate is used adnominally or adverbially．

Auxiliary verb（Subsection ？？）

A verb whose meaning fuses with that of another verb（the TARGET）and cannot stand without it．It is a type of predicate modifier．
Translations：Japanese：助動詞，Arka：freyuyuo

Base letter（Subsection ？？）

Of a manifested grapheme phrase，the letter before whatever mutation，if any，resulted in the MGF．

Basic personal pronouns（Subsubsection ？？）

A set of personal pronouns for first，second，and third persons，the last of which are distinguished by gender．They are defective and lack forms for the core cases．

Bias（Section ？？）

A lexical property of a relational that determines whether adnominal or adverbial usage is unmarked．

Calculus affix（Section ？？）

An affix that given a quantity，derives the derivative or integral of that quantity with respect to a certain variable．In Narâp Crîp，they can manifest as suffixes or infixes depending on the nature of the derivation．

Canonical stroke order（Subsection ？？）

The most common or accepted stroke order of a layer－ $2 \mathrm{w}^{*}$ glyph．

Case（Chapter ？？）

A feature of a declined noun indicating what role it plays in a sentence．Narâp Crîb has eight cases．
Translations：Narâb Crîb：neris，Japanese：格，Arka：same

Cast affix（Section ？？）

A marking used to use a relational in the attachment opposite of its bias．It is a suffix for celestial relationals and a prefix for terrestrial relationals．

Causative voice（Subsubsection ？？）

The voice that adds a cause argument to a verb，demoting the other participants．
Translations：Japanese：使役，Arka：sols

Cenvos（Section ？？）

The script used by Narâp Crîp natively．
Translations：Narâb Crîp：cenvos

Choice question（Section ？？）

A question that asks for a choice between two or more options．

Clareb（Chapter ？？）

A lexical feature of a noun that dictates what numbers it may take．Narâp Crîp has three clarop：singular，collective，and mass．
Translations：Narâb Crîp：clareb

Classifier（Section ？？）

A suffix attached to a short numeral to indicate what kind of objects are being counted．

Clitic（Section ？？）

An entity that acts like an affix phonologically but like a separate word syntactically．In Narâb Crîb，all clitics are postclitics and are marked with a $\eta o s,\langle ’\rangle$ ．
Translations：Japanese：接語

Clitic boundary（Section ？？）

The boundary between a clitic and another word，or between two clitics．The boundary marked by the pos．

Common argument（Section ？？）

The argument shared between the relative clause and the matrix clause（the clause in which it is embedded）．

Complex coda（Subsection ？？）

A coda that can be pronounced only word－finally．Instances of such codas in the middle of a syntactic word are simplified during the conversion to layer 1 ，and such instances immediately before a clitic boundary are simplified during the conversion to layer 2.

Component（Section ？？）

A part from which an inflected form of a word is built．

Compound datum（Section ？？）

A datum that is either a list or a key－value list．

Compounding（Section ？？）

A word－formation process in which a noun or a verb is combined with a noun to form a noun whose meaning is related to both of its constituents．

Conjunct head particle（cheadp）（Section ？？）

A head particle that usually occurs at the beginning of an independent clause phrase but may move after the end of a so－clause．
Translations：Japanese：相対文頭純詞，Arka：noidosnreit

Consonant mutation（Section ？？）

The systematic modification of a consonant，triggered by a morphological environment． Narâp Crîp has two types of mutations：Lenition and eclipsis．

Translations：Japanese：子音変異，Arka：amisomiyu

Constant（Section ？？）

A component that stays the same regardless of the lexical item being inflected．

Converb（Section ？？）

A verb used in a converbal clause，which is used adverbially．Its use can often be trans－ lated to a verbal coordination．
Translations：Japanese：動副詞，Arka：yuofreyu

Coordinand（Section ？？）

The phrases being joined by a coordinator．

Coordinator（Section ？？）

The conjunction of a coordinated phrase．In Narâb Crîb，nominal coordinators appear as clitics and are sometimes fused with pronouns．
Translations：Japanese：等位接続詞

Core case（Chapter ？？）

A collective term for the nominative，accusative，dative，and genitive cases．In particular， basic personal pronouns lack forms for these cases．

Dative case（Chapter ？？）

The case that，among other things，indicates the＇indirect object＇of a verb phrase．
Translations：Japanese：与格，Arka：alsame

Datum（Section ？？）

A part of speech that is used to convey data．A datum can be used as a special indepen－ dent clause phrase．

Degree auxiliary verb（Subsection ？？）

An auxiliary verb that shows the extent to which the target action or state holds．

Demonstrative pro－form（Subsection ？？）

One of the pronouns，determiners，or pro－verbs that is used to refer to something in a particular frame of reference．

Dependent clause（Section ？？）

A clause that somehow modifies a constituent of another clause．This cataegory includes RELATIVE CLAUSES，CONVERBAL CLAUSES，SO－CLAUSES，and NOMINALIZED CLAUSES．
Translations：Japanese：従属節，Arka：roxkyav
Dependent special independent clause phrase（dsICP）（Chapter ？？）
A special independent clause phrase that requires another ICP in the same sentence， such as 〈cirtel〉 by the way，incidentally or 〈olasta〉 in addition，furthermore，moreover．
Translations：Japanese：従属特別主節句，Arka：roxkaallestyavsevet

Derivation（Section ？？）

A word－formation process in which a noun or a verb is systematically modified to create a new related word．

Derivative（Section ？？）
A string that can be derived systematically from the value of a theme for a given paradigm． Translations：Arka：leveol

Digit（Section ？？）

One of the sixteen graphemes that may be used to write short numerals．

Direct aspect（Section ？？）

In the conjugation of verbs，the morphologically unmarked aspect．The direct aspect receives shorter subject suffixes，and the verb is not eclipsed．It is imperfective for the present tense and perfective for the past tense．
Translations：Arka：fremnif

Direct quotative（Section ？？）

A quotative that describes speech exactly as it was or is expressed by someone．

Discretionary ligature（Subsection ？？）

A ligature that is present in layer $2 \mathrm{w}^{*}$ ．These ligatures are not required to be used，nor can they be derived by simply connecting the ending stroke of one glyph to the starting stroke of another．

Ditransitive verb（Section ？？）

A verb that takes a nominative argument，an accusative argument，and a dative argu－ ment．
Translations：Japanese：二重他動詞，Arka：arkansyuo

Eclipsis（Section ？？）

The mutation in Narâp Crîp that tends to add voice to voiceless consonants and change voiced stops into nasals．
Translations：Arka：veltem

Effective fricative（Subsection ？？）

A manifested grapheme phrase whose base letter represents a fricative phoneme；that is，whose base letter is any of $\llbracket \mathrm{fvp}$ 厄 s šh $\mathrm{\hbar} \rrbracket$ ．Such consonants may appear before $\llbracket \mathrm{r} \rrbracket$ or 【1】 as an onset．

Effective plosive（Subsection ？？）

A manifested grapheme phrase whose base letter represents a plosive phoneme；that is， whose base letter is any of $\llbracket \mathrm{ptdc} \mathrm{c} \rrbracket$ ．Such consonants may appear before $\llbracket \mathrm{r} \rrbracket$ or $\llbracket 1 \rrbracket$ as an onset．

Emphatic pronoun（Subsubsection ？？）

A pronoun made of a reflexive pronoun with a possessive clitic attached，which acts roughly like a personal pronoun with an independent form but places focus on the referent．

Gender（Chapter ？？）

A lexical feature of a noun that dictates agreement with certain other words．Also called noun class．Narâp Crîp has three genders：celestial，terrestrial，and human．
Translations：Japanese：性，Arka：him

General independent clause phrase（gICP）（Chapter ？？）

A clause phrase that falls into the typical pattern for Narâp Crîb text，consisting of an independent clause and zero or more subordinate clauses．
Translations：Japanese：普通主節句，Arka：leimlestyavsevet

Generic number（Chapter ？？）

One of the five numbers of Narâb Crîp，which is used on noun phrases that do not refer to a specific referent or referents．

Genitive case（Chapter ？？）

The case that shows such things as possession，composition，description，or apposition．
Translations：Japanese：属格，Arka：tilsame

Genus（Section ？？）

A lexical property of a verb that includes a family of species whose participle forms are conjugated for in a similar way．

Glyph（Section ？？）

The basic unit of representation in layers $2 \mathrm{w}, 2 \mathrm{w}^{*}, 3 \mathrm{w}$ ，and 4 w ．These represent the char－ acters being written．Glyphs distinguish ligatures and final forms from their constituent letters．

Grapheme（Section ？？）

The basic unit of representation in layers 0 and 1 ．Includes letters，digits，and punctua－ tion．

Translations：Japanese：書記素，Arka：haca

Head case（hcase）（Section ？？）

The case of the common argument of a relative clause within the matrix clause．In Narâb Crî̀，this can be any of the eight cases．

Head gender（hgender）（Section ？？）

The gender of the common argument of a relative clause within the matrix clause．

Head number（hnumber）（Section ？？）

The number of the common argument of a relative clause within the matrix clause．

Head particle（headp）（Section ？？）

A particle that occurs at the beginning of an independent clause phrase．
Translations：Japanese：文頭純詞，Arka：osnreit

Imperfective aspect（Section ？？）

The aspect used for ongoing（such as progressive or habitual）actions．
Translations：Japanese：非完結相，Arka：reinnif

Impersonator stem（Section ？？）

In some verbs，the participle forms use stems that are different from the possibly vowel－ affected infinitive stem．A verb can have separate nominative－rcase and non－nominative－ rcase impersonators．
Translations：Japanese：真似幹

Indefinite auxiliary verb（Subsection ？？）

An auxiliary verb whose truth of the action or state it describes makes no implication about the truth value of the action or state described by the target．
Translations：Japanese：不定助動詞

Independent clause（Section ？？）

A clause at the head of an independent clause phrase．If an independent clause ends in a verb，then that verb is in a finite form．
Translations：Japanese：主節，Arka：lestyav

Independent clause phrase（ICP）（Chapter ？？）

A unit of Narâb Crî̀b text terminated by a gen，tja，šac，or cjar．
Translations：Japanese：主節句，Arka：lestyavsevet

Independent verb（iverb）（Section ？？）

A verb that is not an auxiliary verb．

Indirect quotative（Section ？？）

A quotative that describes speech that is not necessarily the exact words used by some－ one but has an equivalent meaning．

Inexact numeral（Subsection ？？）

A numeral that denotes a number that is only approximately known．Inexact numerals in Narâb Crîp are represented in scientific notation．

Infinitive（Section ？？）

The primary lemma form of the verb，which in Narâb Crîb，ends in 【－at】 or 【－it】．
Translations：Japanese：不定詞，Arka：iva

Instrumental case（Chapter ？？）

The case that shows that a noun phrase is used as an instrument or an accompaniment； that is，it has comitative or instrumental function．
Translations：Japanese：具格，Arka：konsame

Interjection（Chapter ？？）

A word in the＇interjection＇part of speech．This constitutes a special independent clause phrase．
Translations：Japanese：感動詞，Arka：xivi

Interrogative pro－form（Subsection ？？）

One of the pronouns，determiners，or pro－verbs that is used to ask a question．

Intransitive verb（Section ？？）

A verb that takes only a nominative argument．
Translations：Japanese：自動詞，Arka：reinoyuo

Inverse aspect（Section ？？）

In the conjugation of verbs，the morphologically marked aspect．The inverse aspect receives longer subject suffixes，and the verb is eclipsed．It is perfective for the present tense and imperfective for the past tense．
Translations：Arka：flonnif

Irregular verb（Section ？？）

A verb that is not conjugated using the regular rules of conjugation．
Translations：Arka：yuo alzettel

Kerning（Subsection ？？）

The alteration of the distance between two glyphs to make their placement less awk－ ward．

Translations：Japanese：カーニング

Layer（Chapter ？？）

One of the eight representations of Narâp Crîp text．Each layer represents Narâb Crîb text at a different layer of abstraction and exists in either the written or spoken mode．
Translations：Narâp Crîb：flef，Arka：hank

Layer－3w ligation（Subsection ？？）

The joining of the last stroke of a layer－3w glyph with the first stroke of the next．This can happen only when the two glyphs have compatible join types on their respective ends．

Lenition（Section ？？）

The mutation in Narâb Crî̀b that tends to turn plosives into fricatives．Some consonants become null under lenition．
Translations：Arka：hoomim

Letter（Section ？？）

Either a true letter or a marker．A glyph that has a letter value．
Translations：Narâp Crîb：cenvos，Arka：hac

Letter number（Subsection ？？）

A number assigned to each letter in layer 1.

Letter sum（Subsection ？？）

The sum of the letter numbers of each letter in a word．This value is used for some noun declension paradigms．

Ligature（Subsection ？？）

A composite of two or more graphemes that are somehow joined together．

Locative case（Chapter ？？）

The case that shows the location or time of an object or an action．
Translations：Japanese：処格，Arka：kasame

Long numeral（Section ？？）

A class of numerals dating back to VE ${ }^{1}$ ENCS．Absent from NCS5 and NCS6 but present in NCv 7 and v9．They are longer than the short numerals and cannot be abbreviated using digits．In Narâb Crîb v9，they agree for case and sometimes gender，and they are limited to 16 ．

Long numeral（Section ？？）

A class of numerals introduced in VE ${ }^{4}$ ENCS．They are shorter than the long numerals and can be abbreviated using digits．In Narâp Crîb v9，they show no agreement but usually require a classifier．

Main object（Chapter ？？）

In trivalent relationals，the more salient of the two objects．
Translations：Arka：lestomit

Manifested grapheme phrase（MGF）（Subsection ？？）

A sequence of graphemes that is said to represent a single phoneme．Either a true letter not followed by a lenition marker（pLAIN LETTER），any of $\llbracket p \mathrm{td}$ č c g mfv $ð \rrbracket$ followed by a lenition mark（Lenited letter），or，word－initially，one of the digraphs $\llbracket \mathrm{mp} \mathrm{vp} \mathrm{dt}$

Marker（Section ？？）

A letter that does not correspond to a phoneme but rather has a semantic role．

Mathematical relational（Subsection ？？）

A relational that encodes a mtahematical relationship between two entities．

Modal auxiliary verb（Subsection ？？）

An auxiliary verb that shows modality．

Morpheme boundary（Section ？？）

The boundary between two morphemes of the same syntactic word．These are consid－ ered significant in layer 0 ．

Negative definite auxiliary verb（Subsection ？？）

An auxiliary verb whose truth of the action or state it describes implies that the action or state described by the target is false．
Translations：Japanese：負定助動詞

Nominalized verb phrase（Section ？？）

A verb phrase used as a noun．This is formed by using the infinitive form of the verb， preceded by a nominalizing particle．
Translations：Arka：yuoasa

Nominative case（Chapter ？？）

The case that indicates the subject of a verb phrase．
Translations：Japanese：主格，Arka：solsame
Number（Chapter ？？）
A feature of a declined noun indicating how many of the referent is present．Narâp Crîb has five numbers：DIRECT，DUAL，PLURAL，SINGULATIVE，and GENERIC．
Translations：Japanese：数，Arka：alx

Numeric prefix（Section ？？）

One of a set of derivational prefixes for forming a term for something related to an aggregate of definite size of another object．They are based on the prime factorization of the number．

Numquote（Subsection ？？）

A digit immediately preceding text surrounded by quotation or grouping marks，mainly used for secondary purposes that lack any dedicated punctuation．
Translations：Narâb Crîb：menerevin，Arka：alxkert

Object（Chapter ？？）

A non－nominative argument of a verb or relational．
Translations：Japanese：目的語，Arka：omit

Orthographic word（oword）（Section ？？）

A sequence of graphemes separated by spaces．A clitic is considered to belong to the same oword as the word to which it is attached．

Paradigm（Section ？？）

A set of rules by which a lexical item can be inflected．

Paradigm（noun declension）（Section ？？）

A lexical property of a noun that governs how it is declined for case and number．

Partial lenition（Section ？？）

Lenition that does not delete 【f \rrbracket ，【v】，or 【d \rrbracket ．
Translations：Arka：vaikhoomim

Participation（ligation and shaping）（Subsection ？？）

A layer－ $2 \mathrm{w}^{*}$ glyph is said to participate in typesetting if its shape is eligible to be altered by the process．All letters participate，but no numerals do so，nor does the space．

Translations：Japanese：参加，Arka：fakt

Participle（Section ？？）

A verb that is inflected to be used in a relative clause to modify a noun phrase．
Translations：Japanese：分詞，Arka：yuoayua

Perfective aspect（Section ？？）

The aspect used for completed actions．
Translations：Japanese：完結相，Arka：intnif

Polar question（Section ？？）

A question that asks whether or not a statement is true．

Positive definite auxiliary verb（Subsection ？？）

An auxiliary verb whose truth of the action or state it describes implies that the action or state described by the target is true．
Translations：Japanese：正定助動詞

Possessive clitic（Subsubsection ？？）

A clitic used on a noun phrase to mark possession．

Possessive construction（Subsubsection ？？）

A double－marked construction to show possession，in which the possessee receives a possessive clitic and the possessor receives the clitic $\langle='(e) p\rangle$ ．

Predicate（Chapter ？？）

A part of speech that describes an action or state．

Principal part（Section ？？）

One of the inflected forms of a lexical entry that can collectively determine all other inflected forms．
Translations：Japanese：主要形，Arka：tihmo

Punctuation（Section ？？）

The class of glyphs that are classified as neither letters nor digits．Includes the clause－ end punctuation $\langle\rangle,.\langle \rangle\rangle,\langle$ ？\rangle ，and $\langle!\rangle$ ；the clitic boundary mark $\rangle\rangle$ ；the lenition mark $\langle\cdot\rangle$ ； the grouping brackets $\}\rangle$ ；and the quotation marks $\langle\mu »\rangle$ ．
Translations：Narâb Crîb：dono，Japanese：句読点，Arka：valia

Quantifier（Subsection ？？）

A pro－form such as the pronouns 〈šino〉 all or 〈nema〉 some，any，which acts as a quan－ tifier over anything occuring after it．

Quotative（Section ？？）

A construction that casts a string into a noun describing the string being conveyed（e．g． said or written）．In Narâp Crîp，this is achieved using a particle after the quotation．

Rational numeral（Subsection ？？）

A numeral that denotes a rational number．

Reflexive pronoun（Subsubsection ？？）

The personal pronoun cenp，which has the meaning of oneself．

Relational（Chapter ？？）

A type of predicate that encodes the relationship between two（or less often three）en－ tities and resembles postpositions．

Relational of motion（Chapter ？？）

A relational derived from a spatial relational that indicates motion of one entity to or from another entity．

Relative case（rcase）（Section ？？）

The case of the common argument of a relative clause within the relative clause．In Narâb Crîl，this can be the nominative，accusative，or dative，as well as the genitives of any of these separately．

Required ligature（Subsection ？？）

A ligature that is present in layer 2 w and is required to be used whenever possible．

Scaffolding verb（Section ？？）

A form of 〈epit〉 or \langle telit \rangle on which a relational can be attached to use it predicatively．

Semblative case（Chapter ？？）

The case that shows semblance in behavior．On a nominalized verb，it translates to＇such that＇，＇as though＇，or＇to the point that＇．

Translations：Arka：yunsame

Semitransitive verb（Section ？？）

A verb that takes a nominative argument and a dative argument．
Translations：Arka：yakkokkolyuo

Sentence（Chapter ？？）

A unit of Narâp Crîp text terminated by a gen，šac，or cjar．
Translations：Japanese：文，Arka：vok

Shifted subject（Subsection ？？）

An argument selected to have a special role in the meaning of an auxiliary verb，such as carrying the volition for the performance or nonperformance of the target action．This role can be assigned to the nominative，accusative，or dative argument of the target．

Simple coda（Subsection ？？）

A coda that is simple enough to occur mid－word．

So－clause（Section ？？）

A clause containing an independent verb phrase followed by a so－particle．

So－particle（Section ？？）

A conjunction such as 〈so〉 if，〈fose〉 because，or 〈dôm〉 to the extent of，which is placed at the end of a so－clause．

Spatial relational（Subsection ？？）

A relational that encodes a spatial relationship between one entity and another．These relationals have two additional relationals（relationals）derived from them．

Special independent clause phrase（sICP）（Chapter ？？）

A clause phrase that has a structure different from that of a general independen clause phrase．Special independent clause phrases include interjections，vocatives，and data．
Translations：Japanese：特別主節句，Arka：allestyavsevet

Species（Section ？？）

A lexical property of a verb that governs how a verb will be conjugated for its participle forms．

Stem（Section ？？）

A variable that usually takes up a substantial part of the inflected form and is consid－ ered the essence of a lexical item．
Translations：Japanese：語幹，Arka：veyutifl

Stress（Section ？？）

A feature that was present in Narâb Crîp v7 but in Narâb Crîb v9 is used solely to calculate tone．

Translations：Japanese：アクセント，Arka：caf

Stroke－order variant（Subsection ？？）

One of the variants of a layer－2w＊glyph that differs only in stroke order．All strokes must be preserved，and no loops may be introduced or removed，but the relative stroke order might be different，and some strokes may be written in the reverse direction； furthermore，a stroke may be split at a turn，and two strokes may be joined where one ends and another begins．

Stylistic variant（Subsection ？？）

One of the variants of a topological variant，which may modify the strokes of the glyph themselves．

Subject（Chapter ？？）

The nominative argument of a verb or relational．
Translations：Japanese：主語，Arka：soi

Syntactic relational（Subsection ？？）

A relational that is defined to be used to support a certain syntactic construction．

Syntactic word（sword）（Section ？？）

A sequence of graphemes separated by either spaces or pos．

Tag question（Section ？？）

A question that asks whether or not a statement is true but leads toward an affirmative answer，asking for confirmation on a statement．

Tail particle（tailp）（Section ？？）

A particle that occurs at the end of an independent clause phrase，immediately after the verb（if present）．
Translations：Japanese：文末純詞，Arka：hetreit

Target（Subsection ？？）

The verb modified by an auxiliary verb．
Translations：Arka：lana

Temporal relational（Subsection ？？）

A relational that encodes a temporal relationship between one entity and another．

Tense（Section ？？）

A property of a conjugated verb that indicates the time in which an action or state occurred．Narâp Crîp has two tenses：PRESENT（more precisely，NONPAST）and pAST．

Translations：Japanese：時制，Arka：mel

Theme（Section ？？）

A variable that is short（almost always one letter long）and might have derivatives．

Tone（Section ？？）

The phonological feature associated with the pitch of a syllable．Narâp Crîp has two tones：HIGH and Low，with the former being more common．This distinction evolved from the absence or presence of creaky voice in Narâp Crîb v7．
Translations：Japanese：声調，Arka：eldem

Tone accounting unit（TAU）（Section ？？）

The maximal unit at which tone is calculated．In other words，calculating the tone of a given syllable requires looking only at the syllables in the same TAU．

Topological variant（Subsection ？？）

One of the variants of a stroke－order variant，which may join strokes together，cause two different strokes to touch each other when they did not（or vice versa），or introduce or remove loops．Lengthening or shortening strokes to alter ligation properties also falls under this level．

Total lenition（Section ？？）

Lenition that includes the deletion of $\llbracket f \rrbracket$ ，$\llbracket \mathrm{v} \rrbracket$ ，or $\llbracket \mathrm{d} \rrbracket$ ．
Translations：Arka：ilmhoomim

Transitive verb（Section ？？）

A verb that takes a nominative argument and an accusative argument．
Translations：Japanese：他動詞，Arka：kokkolyuo

True letter（Section ？？）

A letter that corresponds to a phoneme．
Translations：Arka：fohac
Type I genus（Section ？？）
A genus in which the participle forms are distinguished for hgender but not for hnum－ ber．

Type II genus（Section ？？）

A genus in which the participle forms are distinguished for hnumber but not for hgen－ der．

USR Letter（Section ？？）

One of $\langle\mathrm{w}\rangle,\langle\mathrm{x}\rangle,\langle\mathrm{y}\rangle$ ，or $\langle\mathrm{z}\rangle$ ．These letters are dedicated to be assigned to phonemes in foreign languages that are absent from Narâb Crîp．

Valency class（Section ？？）

A lexical property of a verb or relational that governs how many arguments it can take and what cases they assume．

Variable（Section ？？）

A component that depends on the lexical item being inflected．They can be either stems or themes．
Translations：Arka：miyuvait

Verb（Chapter ？？）

A part of speech that is inflected like a verb．That is，finite forms do not require a scaf－ folding verb，and adnominal forms require participle conjugations．
Translations：Japanese：動詞，Arka：yuo

Vertical ligation（Subsection ？？）

The practice of ligating two glyphs that lie on different lines．

Vocative（Chapter ？？）

A noun phrase in the dative case used to address someone or something．This constitutes a special independent clause phrase．

Voice（Subsection ？？）

A property of the inflected verb that modifies how the arguments of a verb map to the participants of the corresponding action．In Narâp Crîp，voice is considered a predicate modifier．
Translations：Japanese：態，Arka：xalt

Vowel（Subsection ？？）

One of 【e o a î i ê ô â u】，or the phoneme represented by one of these．
Translations：Japanese：母音，Arka：vesto

Vowel affection（Section ？？）

A process by which the last vowel of the stem in some verbs changes in the present forms，past forms，or both，possibly with different vowels between the tenses．
Translations：Arka：vestomiyu

Wh－question（Section ？？）

A question that asks for an item in which an interrogative pro－form appears．

[^0]: ${ }^{1}$ https://flirora.xyz
 2https://flirora.xyz/langdocs/reason4v7.html

[^1]: $\sqrt[3]{\text { https://ziphil.com/ }}$

[^2]: ${ }^{1}$ https://flirora.xyz/langdocs/reason4v7.html
 2https://ncv9.flirora.xyz/diary/0C66-obvious.html

[^3]: $\sqrt[3]{ }$ https://www.reddit.com/r/conlangs/comments/7de032/mklang_the_way_i_make_languages/

[^4]: ${ }^{4}$ https：／／en．wikipedia．org／wiki／Orthogonality＿（programming）

[^5]: 5 http://ithkuil.net/

[^6]: ${ }^{6}$ https://gitlab.com/Kyarei/uruwi-clongos/

[^7]: ${ }^{1}$ https://gitlab.com/Kyarei/ncv9/-/blob/master/map_data/map_master.svg

[^8]: ${ }^{1}$ https：／／en．wikipedia．org／wiki／Appendix＿Probi

[^9]: ${ }^{1}$ https：／／en．wikipedia．org／wiki／Significant＿figures

